

Graphics Hardware (2003)
M. Doggett, W. Heidrich, W. Mark, A. Schilling (Editors)

© The Eurographics Association 2003.

Simulation of Cloud Dynamics on Graphics Hardware

Mark J. Harris William V. Baxter III Thorsten Scheuermann† Anselmo Lastra

Department of Computer Science, University of North Carolina at Chapel Hill, North Carolina, USA‡

Abstract
This paper presents a physically-based, visually-realistic interactive cloud simulation. Clouds in our system are
modeled using partial differential equations describing fluid motion, thermodynamic processes, buoyant forces,
and water phase transitions. We also simulate the interaction of clouds with light, including self-shadowing and
light scattering.

We implement both simulations – dynamic and radiometric – entirely on programmable floating-point graphics
hardware. We use “flat 3D textures” – 3D data laid out as slices tiled in a 2D texture – to implement 3D
simulations on the GPU. This has scalability advantages over the use of traditional 3D textures. We exploit the
relatively slow evolution of clouds in calm skies to enable interactive visualization of the simulation. The work
required to simulate a single time step is automatically spread over many frames while the user views the results of
the previous time step. This technique enables the incorporation of our simulation into real applications without
sacrificing interactivity.

Keywords: Clouds; Graphics hardware, Physically-based simulation, Light scattering, Fluid dynamics.

1 Introduction
Clouds are a ubiquitous feature of our world. They provide
a fascinating dynamic backdrop to the outdoors, creating an
endless array of formations and patterns. They are also an
integral factor in the behavior of Earth’s weather systems.
The combination of physical and visual complexity has
made them an important area of study for meteorologists,
physicists, and even artists.

Clouds can form in many ways. Convective clouds form
when moist air is warmed and becomes buoyant. The air
rises, carrying water vapor with it, expanding and cooling
as it goes. As the temperature and pressure of the air
decrease, its saturation point – the equilibrium level of
evaporation and condensation – is reduced. When the
water vapor content of the rising air becomes greater than
its saturation point, condensation occurs, which yields the
microscopic condensed cloud water particles that we see as
clouds in the sky. Condensation increases the drag on the
air, causing it to slow its ascent, which creates a natural
limit on the vertical extent of a cloud layer. Stratus clouds
usually form when masses of warm and cool air mix due to
radiative cooling or lifting of the air over terrain
(Orographic lifting). An example of the formation of
stratus clouds by mixing is the fog that often rolls into the
city of San Francisco.

We have developed a cloud dynamics simulation based
on partial differential equations that model fluid flow,
thermodynamics, and water condensation and evaporation,
as well as various forces and other factors that influence
these equations. We implement the discrete form of these
equations using the programmable floating-point fragment
processors in the latest graphics hardware. All computation
and rendering is performed on the GPU; the CPU provides
only high-level control. We describe two useful
optimizations for this hardware: a representation of volume
data in two-dimensional textures, and an efficient packing

† Now at ATI Research, Inc., Marlborough, MA. (thorsten@ati.com)
‡ {harrism, baxter, scheuerm, lastra}@cs.unc.edu

Figure 1: Simulated cumulus clouds roll above a valley.

Harris, Baxter, Scheuermann, and Lastra / Simulation of Cloud Dynamics on Graphics Hardware

© The Eurographics Association 2003.

of scalar fields to best exploit the vector operations of the
fragment processor.

In order to incorporate dynamically simulated 3D clouds
into existing 3D applications, the per-frame simulation cost
must be small enough that it does not interfere with the
application. We have implemented a method for
amortizing the simulation cost over multiple frames
allowing the application to budget time for the simulation
each frame. This technique greatly improves interactivity,
allowing us to view the results of a simulation at 60 frames
per second or higher while the simulation progresses at
several iterations per second.

For clouds to look realistic, we must also simulate their
interaction with light. We use an illumination
approximation that incorporates self-shadowing and
multiple forward light scattering, and implement it on the
GPU using dynamic 3D texturing. We have integrated all
of the techniques described above in an interactive flight
application [Harris and Lastra 2001] that amortizes the high
cost of slice-based volume cloud rendering by using
dynamically-generated impostors.

Others in computer graphics have researched methods of
simulating clouds. [Kajiya and Von Herzen 1984] used a
simple method based on PDEs to generate cloud data sets
for their ray tracing algorithm. [Dobashi, et al. 2000] used
a simple cellular automata model of cloud formation to
animate clouds offline. [Miyazaki, et al. 2001] extended
this to use a coupled map lattice model based on
atmospheric fluid dynamics. [Overby, et al. 2002]
described another physical model that, like ours, is based on
the stable fluid simulation of [Stam 1999]. Of these, our

work is most similar to the work by Kajiya and Von Herzen
and Overby et al. However, there are several differences.

Both Overby et al. and Kajiya and Von Herzen use a
buoyancy force that is proportional to potential
temperature. Our model also accounts for the negative
buoyancy effects of condensed water mass and the positive
buoyancy effects of water vapor [Houze 1993]. This
increases the realism of air currents. Overby et al. also
assume that saturation is directly proportional to pressure,
but they provide no information about how they model
pressure in their system. Our system uses a well-known
exponential relationship between saturation and
temperature, and does not explicitly model pressure. In
addition, they introduce two effects that are physically
unrealistic. One is a computation meant to account for the
expansion of rising air. The other is an artificial
momentum-conservation computation. These computations
are superfluous since the Navier-Stokes equations, which
they solve, already account for these phenomena. Overby
et al. were able to achieve rates of a few frames a second.
However we are able to simulate on larger volumes at
interactive rates due to the speed of the graphics hardware.
Finally, none of the previous simulations have been
integrated into truly interactive, high frame rate
applications.

2 Cloud Dynamics
The dynamics of cloud formation, growth, motion and
dissipation are complex. In the development of a cloud
simulation, it is important to understand these dynamics so
that good approximations can be chosen that allow efficient
implementation without sacrificing realism. In this section,
we describe the equations of cloud dynamics that make up
our model. For much more detailed information and
analysis, we refer the reader to [Andrews 2000;Houze
1993;Rogers and Yau 1989].

The basic quantities necessary to simulate clouds are
velocity, u=(u, v, w), air pressure, p, temperature T, water
vapor, qv, and condensed cloud water, qc. These water
content variables are mixing ratios – the mass of vapor or
liquid water per unit mass of air. It is the condensed water,
qc, that makes clouds visible, so this is the desired output of
our simulation. We require a system of equations that
models cloud dynamics in terms of these variables. These
equations are the equations of motion, the thermodynamic
equation, and the water continuity equations.

2.1 Equations of motion
The motion of air in the atmosphere can be described by the
incompressible Euler equations of fluid motion:

1 ˆ() p

t ρ

∂
= − ⋅∇ − ∇ + +

∂

u
u u Bk f (1)

 0∇ ⋅ =u (2)

where ρ is the density of the fluid. Equation (1) is a
statement of the conservation of momentum in which the
first term on the right expresses how the velocity field
transports, or advects itself, the second term is an

Figure 2: A sequence of stills (top-to-bottom, left-to-right)
from our 2D cloud simulation, running on a 128x128 grid at
greater than 30 frames per second.

Harris, Baxter, Scheuermann, and Lastra / Simulation of Cloud Dynamics on Graphics Hardware

©The Eurographics Association 2003.

acceleration caused by the pressure gradient, B is buoyant
acceleration, and f is acceleration due to other forces.
Equation (2) is known as the continuity equation, because it
enforces that the velocity field is divergence-free, and
conserves mass. In addition to the advection of velocity,
temperature and water (in both phases) are also advected by
the flow, as will be described below.

2.2 Parcels and Potential Temperature
A conceptual tool used in the study of atmospheric
dynamics is the air parcel – a small mass of air that can be
thought of as “traceable” relative to its surroundings. The
parcel approximation is useful in developing the
mathematics that our simulation requires.

When a parcel changes altitude without a change in heat,
it is said to move adiabatically. Since air pressure (and
therefore temperature) varies with altitude, the parcel’s
pressure and temperature will change. We can account for
adiabatic changes of temperature and pressure with the
concept of potential temperature. The potential
temperature, θ, of a parcel of air can be defined as the final
temperature that a parcel would have if it were moved
adiabatically from pressure p and temperature T to pressure
p̂ (standard pressure at sea level, ~100 kPa):

ˆ
,

0.286.
p vd

p p

T p
T

p

c cR

c c

κ

θ

κ

= =
Π

−
= = ≈

 (3)

Π is called the Exner function. Rd is the gas constant for
dry air (287 J kg-1 K-1), and cp and cv are the specific heat
capacities of dry air at constant pressure and volume,
respectively. Potential temperature is convenient to use in
atmospheric modeling because it is constant under adiabatic
changes of altitude, while absolute temperature must be
recalculated at each altitude.

2.3 Buoyant Force
Changes in the density of a parcel of air relative to its
surroundings result in a buoyant force on the parcel. If the
parcel's density is less than the surrounding air, this force
will be upward; if the density is greater, the buoyant force
will be downward. The density of an ideal gas is related to
its temperature and pressure. A common simplification in
cloud modeling is to regard the effects of local pressure
changes on density as negligible, so we can represent this
buoyant force per unit mass with the following expression

0

v
H

v

g q
θ

θ
= −

B , (4)

where g is the acceleration due to gravity and qH is the mass
mixing ratio of hydrometeors, which includes all forms of
water other than water vapor. In the case of the simple two-
state bulk water continuity model to be given in Section
2.6, this is just the mixing ratio of liquid water, qc.

(1 0.61)v vqθ θ≈ + is the virtual potential temperature,
which accounts for the effects of water vapor on air

temperature, and is defined as the potential temperature that
dry air would have if its pressure and density were equal to
those of a given sample of moist air. θv0 is the reference
potential temperature, usually between 290 and 300 K.
While the difference between virtual and potential
temperature may seem negligible, it is possible to
noticeably increase buoyant force by increasing only the
water vapor content of the air.

2.4 Environmental Lapse Rate
The Earth’s atmosphere is in static equilibrium. The
hydrostatic balance of the opposing forces of gravity and
air pressure results in an exponential decrease of pressure
with altitude:

/()

0
0

() 1
dg R

z
p z p

T

Γ
Γ

= −

 (5)

Here, z is altitude, and p0 and T0 are the pressure and
temperature at the base altitude. Typically, p0 = 100 kPa
and T0 is in the range 280–310 K. The lapse rate, Γ, is the
rate of decrease of temperature with altitude. In the Earth's
atmosphere, temperature decreases approximately linearly
with height in the troposphere (sea level to about 15 km, the
tropopause). Therefore, we can assume that Γ is a constant.
A typical value for Γ is around 10 K km-1. We can use (3)
and (5) to compute the environmental temperature and
pressure of the atmosphere in the absence of disturbances,
and as we describe below, compare them to the local
temperature and pressure to compute the saturation point of
the air.

2.5 Saturation Mixing Ratio
Cloud water continuously changes phases from liquid to
vapor and vice versa. When the rates of condensation and
evaporation are equal, air is said to be saturated. The water
vapor mixing ratio at saturation is called the saturation
mixing ratio, denoted by qvs(T,p). When the water vapor
mixing ratio exceeds the saturation mixing ratio, the air is
supersaturated. Rather than remain in this state,
condensation may occur, leading to cloud formation. A
useful empirical approximation for saturation mixing ratio
is

380.16 17.67

(,) exp
243.5

vs
T

q T p
p T

=
+

, (6)

with T in Celsius and p in Pa. This is based on the formula
for a curve fit to data in standard meteorological tables to
within 0.1% over the range -30ºC ≤ T ≤ 30ºC [Rogers and
Yau 1989].

2.6 Water Continuity
We use a simple Bulk Water Continuity model as described
in [Houze 1993] to describe the evolution of water vapor
mixing ratio qv and condensed cloud water mixing ratio, qc.
Cloud water is water that has condensed but whose droplets
have not grown large enough to precipitate. The water
mixing ratios at a given location are affected both by
advection and by phase changes (from gas to liquid and

Harris, Baxter, Scheuermann, and Lastra / Simulation of Cloud Dynamics on Graphics Hardware

© The Eurographics Association 2003.

vice versa). In this model, the rates of evaporation and
condensation must be balanced, resulting in the water
continuity equation,

 () ()v c
v c

q q
q q C

t t

∂ ∂
+ ⋅ ∇ = − + ⋅ ∇ = −

∂ ∂

u u , (7)

where C is the rate of condensation.

2.7 Thermodynamic Equation
While adiabatic motion is a valid approximation for air that
is not saturated with water vapor, the potential temperature
of saturated air cannot be assumed to be constant. If
expansion of a moist parcel continues beyond the saturation
point, water vapor condenses and releases latent heat,
warming the parcel. If latent heating and cooling due to
condensation and evaporation are the only non-adiabatic
heat sources, then the first law of thermodynamics results in

 () ()v
v

p

qL
q

t c t

θ
θ

∂∂ −
+ ⋅∇ = + ⋅ ∇

∂ Π ∂

u u , (8)

where L is the latent heat of vaporization of water, 2.501 J
kg-1 at 0° C (Changes by less than 10% within ±40°).
Notice from (7) that we can substitute –C for the quantity
in parentheses above. This equation states that the change
in local potential temperature is determined both by
advection of potential temperature in and out of the local
region, and by the latent heat of local phase changes.

2.8 Vorticity Confinement
Like the smoke that was the simulation goal of [Fedkiw, et
al. 2001], convective clouds typically contain rotational
flows at a variety of scales. As they explained, numerical
dissipation caused by simulation on a coarse grid damps out
these interesting features. Therefore like Fedkiw et al., we
use vorticity confinement to restore these fine-scale
motions. [Overby, et al. 2002] also used vorticity
confinement in their cloud simulation.

Vorticity confinement works by first computing the
vorticity ω = ∇ × u , from which a normalized vorticity
vector field

 , where N
η

η ω
η

= = ∇ (9)

is computed. The vectors N point from areas of lower
vorticity to areas of higher vorticity. From these vectors we
can compute a force that can be used to replace dissipated
vorticity back in:

 ()vc h Nε ω= ×f . (10)

Here ε is a user-controlled scale parameter and h is the grid
scale.

3 Solving the Equations
From the description above, we see that we must solve the
equations of fluid flow, (1) and (2), the water continuity
equation, (7), and the thermodynamic equation, (8).

3.1 Fluid Flow
Our cloud model is based on the equations of fluid flow, so
our simulator is built on top of a standard fluid simulator
much like the ones described by [Fedkiw, et al. 2001;Stam
1999]. We solve the equations of motion using the stable
two step technique described in those papers.

In the first step, we use the semi-Lagrangian advection
technique that Stam described to compute an intermediate
velocity field u′, and add to it the buoyancy force, (4), and
vorticity confinement force, (10). This step solves equation
(1) without the pressure term. In the second step, the
intermediate field u′ is made incompressible (so that it
satisfies both (1) and (2)) using a projection method based
on the Helmholtz-Hodge decomposition [Chorin and
Marsden 1993]. The projection is performed by solving for
the pressure using the Poisson equation

 2 1
p

tδ
′∇ = ∇⋅u (11)

with pure Neumann boundary conditions (/ 0p n∂ ∂ =),
and then subtracting the pressure gradient from u′:

 t pδ′= − ∇u u . (12)

Using the advection technique as for velocity, we also
advect the temperature, θ, and water variables, qv and qc.
During advection, we apply different boundary conditions
for each of the variables. For the velocity, we use the no-
slip condition (u = 0) on the bottom boundary, and free-slip
condition (/ 0n∂ ∂ =u) on the top. At the sides, we set the
vertical velocity to zero, and the horizontal velocities to the
user-defined horizontal wind speeds. We set the top and
side temperature boundaries to the user-defined ambient
temperature. We use periodic side boundaries for qv to
simulate water vapor being blown in from outside our
simulation domain, and we set all qc boundaries and the top
qv boundary to zero. Finally, we specify input fields at the
bottom boundary for both temperature and water vapor.
These fields are randomly perturbed, user-specified
constant values, and are the source of the temperature and
water that cause clouds to form.

3.2 Water Continuity
The solution of the water continuity equations (7) is
straightforward. The equations state that the changes in qv
and qc are governed by advection of the quantities as well
as by the amount of condensation and evaporation. We
solve them in two steps. First, we advect each using the
semi-Lagrangian technique mentioned before, resulting in
intermediate values q′v and q′c. Then, at each cell, we
compute the new mixing ratios as follows:

min(,)

,

v vs v c

v v v

c c v

q C q q q

q q q

q q q

′ ′ ′∆ = −∆ = −

′ ′= + ∆

′ ′= − ∆

 (13)

where ∆C is the amount of condensation over the time step,
and qvs is computed using equation (6) as described in
Section 2.5. We compute T using equation (3) with the

Harris, Baxter, Scheuermann, and Lastra / Simulation of Cloud Dynamics on Graphics Hardware

©The Eurographics Association 2003.

current potential temperature θ, and the local environmental
pressure computed with equation (5).

3.3 Thermodynamics
The left-hand side of the thermodynamic equation, (8),
shows that like the other quantities, potential temperature is
advected by the velocity field, so we compute an
intermediate value, θ ′ via the semi-Lagrangian advection
scheme. As mentioned before, we can substitute –C for the
quantity in parentheses on the right-hand side of the
thermodynamic equation. This means that the temperature
increases by an amount proportional to the amount of
condensation, and we can update it as follows:

p

L
C

c
θ θ ′= + ∆

Π
 (14)

4 Implementation
We solve the equations presented in the previous section on
a grid of voxels. We use a staggered grid discretization of
the velocity and pressure equations as in [Fedkiw, et al.
2001;Foster and Metaxas 1997;Griebel, et al. 1998]. This
means that pressure, temperature, and water content are
defined at the center of voxels while velocity is defined on
the faces of the voxels. Not only does this method reduce
numerical dissipation as mentioned by Fedkiw et al., but as
Griebel et al. explain, it prevents possible pressure
oscillations that can arise with collocated grids (in which all
variables are defined at cell centers). Our experiments with
collocated grids have indeed shown some undesirable
pressure oscillations when buoyant forces are applied.
Section 5.2 describes our implementation of voxel grids
using textures.

Overall, our method for solving the equations of cloud
dynamics at each discrete time step is as follows.

1. Advect θ, qv, and qc and velocity, u.
2. Compute vorticity confinement force, fvc.
3. Compute buoyant force, B.

4. Compute () .advected vc tδ′ = + + ⋅u u B f

5. Update qv and qc according to (13).
6. Update θ according to (14).
7. Compute the divergence .′∇ ⋅u
8. Solve the Poisson-pressure equation, (11).
9. Compute p′= − ∇u u .

Our implementation of steps 1, 2, 7, and 9 follows
[Fedkiw, et al. 2001] nearly exactly. We refer the reader to
the appendix of that paper for the discrete form of the
equations. Step 3 can be implemented directly from
equation (4). However we find that providing the user with
a scale factor applied to qH provides useful control over the
buoyancy of clouds. In our implementation, steps 5 and 6
are performed in a single fragment program (See Section
5.1), since we store the water and temperature variables in a
single texture. We solve the remaining step, the Poisson-
pressure equation, using a standard iterative relaxation
solver applied to equation (11).

[Fedkiw, et al. 2001] use the conjugate gradient method
with an incomplete Choleski preconditioner to solve the
Poisson-pressure equation. While this is a straightforward
solver to implement and run on a CPU, our implementation
uses fragment programs that run on the GPU.
Implementation of conjugate gradient on the GPU is
feasible ([Bolz, et al. 2003;Krüger and Westermann 2003]),
but many passes are required just to compute the large
vector inner products required by the algorithm (O(log2N)
passes, where N is the grid resolution). Because of this, we
chose to use a simple solver such as Jacobi or Red-Black
Gauss Seidel relaxation [Golub and Van Loan 1996].
These solvers can be implemented to run in one and two
render passes, respectively, using only a few lines of Cg
code. Therefore we can run more iterations in a given
amount of time than with a more complex method, which
helps make up for the slower convergence of our chosen
solvers. Section 5.3 discusses the efficient implementation
of these solvers.

5 Hardware Implementation
As mentioned before, we perform all of the numerical
computation for our cloud simulator in the programmable,
floating point fragment unit of a graphics processor. State
fields, such as p and u, are stored in textures. For
efficiency, we store θ, qv, and qc in different channels of the
same texture. Computation is performed much as in
[Harris, et al. 2002]. The difference is that newer GPUs
provide much more power in terms of precision, flexibility
and instruction count, allowing us to tackle much more
complex simulations, such as clouds. State textures are
updated using a render pass that draws a quadrilateral fit to
the viewport. We implement computations using fragment
programs written in the Cg shading language [Mark, et al.
2003]. The fragment programs implement the steps
described in the previous section using texturing operations
to read data from the grids.

At the end of a render pass, the state texture is updated.
This update can be performed via a copy from the frame
buffer to the texture, or via “render to texture”. Render to
texture requires that two textures be kept for each state
field, and swapped after each update.

5.1 Interior and Boundary Computation
In a typical CPU implementation of fluid simulation, the
simulation domain is represented in an array. Many
simulation steps require different computations on the
interior of the simulation domain than on its boundaries, so
usually a single row of cells on the outside of the domain is
reserved to store boundary values [Griebel, et al. 1998]. To
perform a given simulation step, such an implementation
will typically iterate over the domain using a set of nested
loops, and then update the boundary values separately.

Hardware simulation is very similar. The SIMD nature
of the fragment processor means that the render-pass idiom
described above is equivalent to the nested-loops-over-an-
array idiom of CPU simulation. The borders of a texture
contain boundary values, and different computations (thus
different fragment programs) must be executed on the

Harris, Baxter, Scheuermann, and Lastra / Simulation of Cloud Dynamics on Graphics Hardware

© The Eurographics Association 2003.

border and interior. To implement this, we activate a
boundary fragment program and render line primitives over
the edges of the view port. Then we activate an interior
fragment program and render a quadrilateral that covers all
but the outer single-pixel border. This is illustrated in
Figure 3.

5.2 Flat 3D Textures
Previous methods for 3D simulation on GPUs have used 3D
textures or a stack of 2D textures to represent the grid
[Harris, et al. 2002]. To apply a simulation operation to the
grid – for example to compute the buoyancy force – the
volume must be updated slice by slice. At each slice, the
operation is applied, and the texture for that slice is
updated, requiring a texture copy or a context switch
associated with render to texture.

We instead represent our grids using what we call a
“flat” 3D texture. A flat 3D texture is actually a 2D texture
that contains the tiled slices of a 3D volume, as shown in
Figure 4. In the figure, the dark grey borders represent the
boundary cells of each slice, and the light grey boxes in the
lower left and upper right represent the boundary slices of
the volume along the slicing axis. Updating a flat 3D
texture is much like the 2D texture update described in the
previous section. We render the interior of each slice (the
colored squares) as a quad primitive, and we render the
boundaries using line primitives. One fragment program is
used for all of the interior quad primitives, and another is
used for the boundary lines and the two “end cap” (lower
left and upper right) quads.

The advantage of true 3D textures over flat 3D textures is
that addressing them is easy, since the GPU supports it.
With flat 3D textures, however, we must convert the R
texture coordinate into a 2D offset in order to do a texture
lookup. We do this in our fragment programs. In practice,
we precompute a 1D lookup texture that contains the offsets
for each slice, and use this as an indirection table indexed
by the Z coordinate.

Flat 3D textures can be updated in a single render pass –
only one texture update is required for the entire volume.
This means that a 3D simulation can be implemented in the
same number of passes (ignoring changes in the
computation itself) as an equivalent 2D simulation. We
find that flat 3D textures provide a performance advantage
over true 3D textures on current hardware. While the
amount of data copied or updated is the same, we find that
the total slice update overhead is much greater for true 3D

textures. Also, flat 3D textures provide a quick,
inexpensive way to preview the results of a 3D simulation,
since they can be easily rendered as a 2D image.

5.3 Vectorized Iterative Solvers
Iterative solution of the Poisson equation for pressure is one
of the most expensive operations in our numerical cloud
simulation. For simulation on the GPU, the choice of
solver is limited by the inability of fragment programs to
both read and write the same memory in the same pass.
This rules out Gauss-Seidel and Successive Over-relaxation
(SOR), which have been used in many previous graphics
applications of fluid simulation. We have, however,
implemented several solvers and conducted an investigation
to determine the most efficient of these given the
constraints of graphics hardware. The results are given in
Table 1.

Our Jacobi solver stores pressure as a single-channel
floating point texture. The Jacobi fragment program also
takes a divergence texture as input, and computes an
updated pressure value as output for each fragment by
sampling neighboring pressure values and subtracting the
input divergence. After this single pass the output texture is
used as input for the next iteration of the solver.

Red-Black Gauss-Seidel is a variation on Jacobi that
splits the cells into two sets such that new red cell values
only depend on black cell inputs, and vice versa (see Figure
5). All the red values can be updated using only the old
black values, and then the black values can be updated
using the new red values. Using the more recent red values
for half of the texel updates improves the convergence rate.

To implement Red-Black efficiently we pack four
pressure values into a single RGBA texel, as shown in
Figure 5. This allows us to reduce the overall number of
texture lookups required for each half-pass of Red-Black.
Without packing, the Red pass would require 5 texture
lookups per pressure update (corresponding to the 5 cells
of a 5-point discrete Laplacian) in 2D, and 7 lookups in 3D.
By packing pressure in a vectorized format the same 5 or 7
texture lookups enable us to update 4 pressure values
instead of just one, as can been seen in Figure 5. With the 5
samples shown the 4 pressure values in gi,j can be updated.
This is a significant savings; however, we incur extra
overhead since the Black cells must be explicitly passed
through on a Red pass and vice versa, so that both Red and
Black are written every pass, and we also incur the
overhead of two rendering passes for one solver iteration.

Figure 3: Updating a state field involves rendering a
quad for the interior and a line for each border.
Different fragment programs are applied to interior and
border fragments.

Figure 4: Flat 3D textures tile the slices of a 3D volume
onto a 2D texture. This allows all slices of the volume to
be updated in a single rendering pass.

Harris, Baxter, Scheuermann, and Lastra / Simulation of Cloud Dynamics on Graphics Hardware

©The Eurographics Association 2003.

Still, Red-Black converges faster than a basic Jacobi solver
given a fixed time budget.

But the same vectorization technique used to accelerate
the Red-Black solver can also be used to accelerate the
Jacobi solver. With vectorization, two full Jacobi iterations
take less time than a full Red-Black iteration, and give
better convergence. The result is that vectorized Jacobi
gives the best convergence under a fixed time budget of any
of the hardware solvers we have tested (See Table 1).

6 Interactive Applications
Cloud simulation is a very computationally intensive
process, and is therefore usually done offline. But
simulations of phenomena such as clouds have the potential
to provide rich dynamic content for interactive applications,
so one of our goals in this work has been to create a
simulation that will work well online.

As a test of this, we have integrated our cloud simulation
into our SkyWorks cloud rendering engine [Harris and
Lastra 2001]. SkyWorks was designed to render scenes full
of static clouds very fast. It precomputes the illumination
of the clouds, and then uses this illumination to render the
clouds at run time. To amortize the cost of rendering the
clouds, it uses dynamically generated impostors [Schaufler
1995].

6.1 Simulation Amortization
In order to incorporate dynamically simulated 3D clouds
into existing 3D applications such as SkyWorks, the per-
frame simulation cost must be small enough that it does not
interfere with the application. If we were to perform a
complete simulation time step every frame, our
application's frame rate would drop below the frame rate of
the cloud simulation. As an example, with a volume of
resolution 643, we simulate at under four iterations per
second. This is not an acceptable frame rate for a flight
simulator.

To avoid this problem, we have built into our simulation
system a method for automatically dividing the work of a
simulation time step over multiple frames. This is fairly
straightforward to do with a GPU simulation because each
operation is a render pass. We have instrumented our
simulator with the ability to measure the time taken by any
render pass. Every so often (usually just at startup and at
the user's request) we run a complete simulation step with
these timers active, and we record the time for each step.
Then, in each frame of the application, the application
budgets a certain amount of time for the simulation, and the
simulator attempts to stay as close to that budget as
possible.

We have found that this technique makes a tremendous
difference in the performance of our application. We can
fly around and through dynamic clouds at 40-80 frames per
second while the simulation updates 1-5 times per second.
Since our simulation time step can be set at a few seconds,
we can have clouds that update in approximately "real
time".

Still, this system is not perfect, because it is very difficult
to accurately time an operation in the graphics pipeline. In
order to get the best interactivity, we must be sure the
simulator rarely goes over budget. To do this, we try to get
worst case timings for each operation by forcing the
pipeline to flush before we stop the timer. But this is not
realistic, because under normal conditions (i.e. without
forced flushes) there is more parallelism in the GPU.
Therefore, a better method – perhaps with hardware support
– of timing GPU operations would be useful.

7 Cloud Rendering
To render simulated clouds in SkyWorks, we convert the
simulation’s current cloud water texture into a true 3D
texture, which is then used to render the cloud for multiple
frames. We found that rendering directly from the flat 3D
texture is too expensive, because of the added cost of the
fragment program required to read the texture with 3D
coordinates. Since a simulation time step does not
complete every frame anyway, we find that the conversion
is overall much faster. Also, the generation of the 3D
texture (which is performed entirely on the GPU) is
included in the simulation amortization, so that it doesn't
affect our interactive frame rates. We use the impostors
provided by SkyWorks as-is (one impostor for the entire
simulation grid), and found that the rendering speed
advantage impostors provide for static clouds transfers well

Poisson
Solver

Convergence
per msec1 Convergence2 Time3

(msec)

Jacobi 2D 0.50 0.078 45.9
Red-Black

2D 0.85 0.124 45.3

Vectorized
Jacobi 2D 1.0 0.079 17.3

Jacobi 3D N/C N/C 110†

Vectorized
Jacobi 3D N/C N/C 49.0

1Normalized convergence per millisecond achieved with a 17 ms
time budget. 2Relative convergence after 100 iterations. 3Time
for execution of 100 iterations. †Estimated from register usage,
program length, and fragment count for 3D Jacobi program.

Table 1: A comparison of the convergence rates of
various iterative solvers running on the GPU. All grids
were 128x128 or 32x32x16. ("N/C" = "not computed".)

Figure 5: We implement efficient iterative solvers by
packing multiple scalar values into each texel. The cross
pattern demonstrates the sampling for vectorized Jacobi
and Red-Black iteration.

Harris, Baxter, Scheuermann, and Lastra / Simulation of Cloud Dynamics on Graphics Hardware

© The Eurographics Association 2003.

to our dynamic clouds, since the clouds remain static for
several frames at a time.

7.1 Cloud Illumination
To create realistic images of clouds, we must account for
the complex nature of their interaction with light. Light
that reaches your eyes from a cloud has been scattered
many times by the tiny water droplets in the cloud. This is
what gives clouds their soft, diffuse appearance. A full
simulation of multiple scattering requires the solution of a
double-integral equation. However, cloud water droplets
scatter most strongly in the direction of travel of the
incident light, or forward direction. [Harris and Lastra
2001] used this fact to derive a computationally
inexpensive model that simulates multiple forward
scattering. Their algorithm, based on the shadowing
algorithm of [Dobashi, et al. 2000], applied the
approximation to precompute illumination of cloud
particles using frame buffer blending and read back.

We use an extension of this algorithm that works with
3D textures instead of particles. Like the previous
algorithms, it is a two pass algorithm that computes a 3D
illumination texture, and then uses this illumination texture
to illuminate a 3D density texture. The algorithm works as
follows.

Tightly fit a bounding box to the bounding box of the
cloud density volume, oriented so that the Z axis of the
bounding box is aligned with the forward light direction.
Traverse the light volume, rendering N slices, where N is
the resolution of the light texture. Set the blending function
and polygon colors as in [Harris and Lastra 2001] to
compute shadowing and forward light scattering. Enable
automatic texture coordinate generation so that rendering a
quad along the current slice will be correctly textured by
the 3D cloud density texture. At each slice, render a quad,
and then copy the resulting frame buffer to the current slice
of the 3D illumination texture. The result, shown in the
middle of Figure 6, is a 3D texture that represents
volumetric illumination.

At run time, we render slices oriented to the viewer. We
bind the cloud density texture and the light texture to the
first two texture units, and we again use automatic texture
coordinate generation. Finally, we set the texture matrix on
the second texture to be the transformation matrix from the
cloud space (usually world space) into the oriented light
volume's space. This transform is determined by the fitting
of the oriented bounding box. By using this texture matrix,

we transform texture coordinates for each lookup into the
correct position in the light volume, so that the cloud is
correctly illuminated.

For efficiency, we typically use a light volume texture
that is one half the resolution of the cloud density volume.
This allows us to very quickly create the light volume. Our
algorithm is an alternative implementation of traditional
two-pass volumetric illumination algorithm based on
[Kajiya and Von Herzen 1984]. It is similar to the "shadow
buffer" algorithm of [Levoy 1988]. The advantage is that
since our light volume is oriented along the light direction,
it is fast to compute in hardware. The disadvantage is that
part of the resolution is wasted unless the light direction
matches one of the cloud volume's axes, as can be seen in
Figure 7.

8 Results and Conclusion
We have demonstrated a method for fast, physically-based
cloud simulation implemented on programmable graphics
hardware. Our GPU simulation system provides fast
simulation of clouds on larger volumes than has been seen
previously. On a volume of resolution 323, we achieve an
update rate of approximately 27 iterations per second on an
NVIDIA GeForce FX Ultra. Flat 3D textures improve the
scalability of the computation, since the number of render
passes for simulations of any resolution is the same. Thus,
a volume of resolution 643 updates at about 3.6 iterations
per second, which means that the efficiency is increasing
with the increase in volume. With traditional 3D textures,
we doubt we would see the same scalability in our
simulations.

Our simulation amortization technique has proven very
valuable for visualizing the results of our simulations.
Combined with our efficient illumination algorithm and the
use of impostors for rendering, this technique allows the
user to move around and through clouds like the ones in
Figure 1, Figure 8 and Figure 9 at high frame rates (the
grid resolutions in both figures were 64x32x32 and
64x32x64).

The advection portion of our simulation is one of its
bottlenecks. This is especially true in the case of staggered
grid advection. We have made a comparison of the
performance of advection under various conditions, shown
in Table 2. We found that in large 3D staggered grid
simulations, the advection could cause a large, regular jump
in our smooth frame rate when performing the amortized
simulation. We solved this problem by splitting advection
into three less expensive passes (one for each dimension).
This increase in granularity enables a more balanced per-

Figure 6: An unlit density volume (left), an oriented light
volume (middle), and the resulting illuminated volume
(right).

Figure 7: We use a 3D texture oriented along the light
direction to compute and cloud illumination in hardware.

Harris, Baxter, Scheuermann, and Lastra / Simulation of Cloud Dynamics on Graphics Hardware

©The Eurographics Association 2003.

frame simulation cost, since the velocity computation can
be spread over more than one frame. Because velocity is
stored in three separate color channels of a texture, we use
the color mask functionality of OpenGL to ensure that each
advection pass writes only a single color channel. This
way, only one texture update is necessary for all three
passes. Splitting advection has another advantage.
Fragment program performance on GeForce FX decreases
with the number of registers used. Therefore even though
the total instruction count for the split version is slightly
higher, the shorter fragment programs execute faster since
they use fewer registers. Therefore the total cost of split
advection is lower, as shown in Table 2.

In the future, we hope to enhance the performance of our
simulation. One optimization we have not taken much
advantage of is the use of textures as lookup tables. While
fragment programs provide computational flexibility, this
comes at a cost. Lookup tables are important just as they
are in CPU computation. Also, as our simulation grid sizes
increase, we think that a more sophisticated linear solver
will be needed to achieve good convergence. The multigrid
method shows promise for accurate large-grid simulation
on the GPU [Bolz, et al. 2003;Goodnight, et al. 2003] .

We also plan to improve the visual results of our
simulation. One major improvement will come from
animation blending. Currently, the low simulation update
rate causes visual “popping”. Linear interpolation of the
current and next time step will help. A possibly better idea
would be to use the current velocity field to perform a
partial advection at each time step. This advection would
use the collocated grid advection operator for efficiency,
since the goal would be visual smoothing, not accuracy.

Acknowledgements
The authors would like to thank Jeff Juliano and others at
NVIDIA for their generous help in tracking down driver
bugs and other problems. We are also grateful to Mike
Bunnell for the original idea behind flat 3D textures. This
work was supported in part by NVIDIA Corporation, The
Link Foundation, NSF grant number ACI-0205425, and
NIH National Institute of Biomedical Imaging and
Bioengineering, P41 EB-002025.
References
[Andrews 2000] Andrews, D.G. An Introduction to
Atmospheric Physics. Cambridge University Press. 2000.
[Bolz, et al. 2003] Bolz, J., Farmer, I., Grinspun, E. and
Schröder, P. Sparse Matrix Solvers on the GPU: Conjugate
Gradients and Multigrid. Computer Graphics (Proceedings of
SIGGRAPH 2003), ACM Press. 2003.
[Chorin and Marsden 1993] Chorin, A.J. and Marsden, J.E. A
Mathematical Introduction to Fluid Mechanics. Third.
Springer. 1993.
[Dobashi, et al. 2000] Dobashi, Y., Kaneda, K., Yamashita, H.,
Okita, T. and Nishita, T. A Simple, Efficient Method for
Realistic Animation of Clouds. Computer Graphics
(Proceedings of SIGGRAPH 2000), ACM Press, 19-28. 2000.
[Fedkiw, et al. 2001] Fedkiw, R., Stam, J. and Jensen, H.W.
Visual Simulation of Smoke. Computer Graphics (Proceedings
of SIGGRAPH 2001), ACM Press / ACM SIGGRAPH. 2001.

Average time per pass (ms)

Advected
quantity

Collocated
Grid

Staggered
Grid

Scalar 2D 0.71 0.87
Velocity 2D 0.67 2.40

Total 2D 1.39 3.28
Scalar 3D N/C 2.34

Velocity 3D N/C 8.28
Total 3D N/C 10.61

Velocity 3D Split
(3 passes) N/C 5.90

Total 3D
Velocity Split N/C 8.24

Table 2: Cost comparison for various implementations of
the advection operation. (N/C = “not computed”.)

Figure 8: Simulated clouds in our interactive flight application, SkyWorks.

Harris, Baxter, Scheuermann, and Lastra / Simulation of Cloud Dynamics on Graphics Hardware

© The Eurographics Association 2003.

[Foster and Metaxas 1997] Foster, N. and Metaxas, D.
Modeling the Motion of a Hot, Turbulent Gas. Computer
Graphics (Proceedings of SIGGRAPH 1997), ACM Press, 181-
188. 1997.
[Golub and Van Loan 1996] Golrub, G.H. and Van Loan, C.F.
Matrix Computations. Third Edition. The Johns Hopkins
University Press. 1996.
[Goodnight, et al. 2003] Goodnight, N., Woolley, C., Lewin,
G., Luebke, D. and Humphreys, G. A Multigrid Solver for
Boundary Value Problems using Graphics Hardware.
Proceedings of Graphics Hardware 2003, 2003
[Griebel, et al. 1998] Griebel, M., Dornseifer, T. and
Neunhoeffer, T. Numerical Simulation in Fluid Dynamics : A
Practical Introduction. Society for Industrial and Applied
Mathematics. 1998.
[Harris, et al. 2002] Harris, M.J., Coombe, G., Scheuermann, T.
and Lastra, A. Physically-Based Visual Simulation on Graphics
Hardware. Proceedings of SIGGRAPH / Eurographics
Workshop on Graphics Hardware 2002, 2002
[Harris and Lastra 2001] Harris, M.J. and Lastra, A. Real-Time
Cloud Rendering. Computer Graphics Forum (Proceedings of
Eurographics 2001), Blackwell Publishers, 76-84. 2001.
[Houze 1993] Houze, R. Cloud Dynamics. Academic Press.
1993.
[Kajiya and Von Herzen 1984] Kajiya, J.T. and Von Herzen,
B.P. Ray tracing volume densities. Computer Graphics
(Proceedings of SIGGRAPH 1984), ACM Press, 165-174.
1984.

[Krüger and Westermann 2003] Krüger, J. and Westermann, R.
Linear Algebra Operators for GPU Implementation of
Numerical Algorithms. Computer Graphics (Proceedings of
SIGGRAPH 2003), ACM Press. 2003.
[Levoy 1988] Levoy, M. Display of surfaces from volume data.
IEEE Computer Graphics & Applications, 8(3). 29-37.1988.
[Mark, et al. 2003] Mark, W.R., Glanville, R.S., Akeley, K. and
Kilgard, M.J. Cg: A System for Programming Graphics
Hardware in a C-like Language. Computer Graphics
(Proceedings of SIGGRAPH 2003), ACM Press. 2003.
[Miyazaki, et al. 2001] Miyazaki, R., Yoshida, S., Dobashi, Y.
and Nishita, T. A Method for Modeling Clouds Based on
Atmospheric Fluid Dynamics. Proceedings of Pacific Graphics
2001, IEEE Computer Society Press, 363-372. 2001
[Overby, et al. 2002] Overby, D., Melek, Z. and Keyser, J.
Interactive Physically-Based Cloud Simulation. Proceedings of
Pacific Graphics 2002, 469-470. 2002
[Rogers and Yau 1989] Rogers, R.R. and Yau, M.K. A Short
Course in Cloud Physics. Third Edition. Butterworth
Heinemann. 1989.
[Schaufler 1995] Schaufler, G. Dynamically Generated
Impostors. Proceedings of GI Workshop "Modeling - Virtual
Worlds - Distributed Graphics", infix Verlag, 129-135. 1995
[Stam 1999] Stam, J. Stable Fluids. Computer Graphics
(Proceedings of SIGGRAPH 1999), ACM Press, 121-128.
1999.

Figure 9: A view of simulated clouds from the ground. (The far clouds are part of the sky texture.)

