
Graphics Hardware (2002), pp. 1-10
Thomas Ertl, Wolfgang Heidrich, and Michael Dogget (Editors)

© The Eurographics Association 2002.

Physically-Based Visual Simulation on Graphics Hardware

Mark J. Harris Greg Coombe Thorsten Scheuermann Anselmo Lastra

Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, USA

{harrism, coombe, scheuerm, lastra}@cs.unc.edu

Abstract
In this paper, we present a method for real-time visual simulation of diverse dynamic phenomena using programmable graphics
hardware. The simulations we implement use an extension of cellular automata known as the coupled map lattice (CML). CML
represents the state of a dynamic system as continuous values on a discrete lattice. In our implementation we store the lattice
values in a texture, and use pixel-level programming to implement simple next-state computations on lattice nodes and their
neighbors. We apply these computations successively to produce interactive visual simulations of convection, reaction-diffusion,
and boiling. We have built an interactive framework for building and experimenting with CML simulations running on graphics
hardware, and have integrated them into interactive 3D graphics applications.

Keywords: Coupled Map Lattice; CML; Visual Simulation; Graphics Hardware; Reaction-Diffusion; Multipass Rendering.

1 Introduction
Interactive 3D graphics environments, such as games, virtual
environments, and training and flight simulators are
becoming increasingly visually realistic, in part due to the
power of graphics hardware. However, these scenes often
lack rich dynamic phenomena, such as fluids, clouds, and
smoke, which are common to the real world.

A recent approach to the simulation of dynamic
phenomena, the coupled map lattice [Kaneko 1993], uses a
set of simple local operations to model complex global
behavior. When implemented using computer graphics
hardware, coupled map lattices (CML) provide a simple, fast
and flexible method for the visual simulation of a wide
variety of dynamic systems and phenomena.

In this paper we will describe the implementation of
CML systems with current graphics hardware, and
demonstrate the flexibility and performance of these systems
by presenting several fast interactive 2D and 3D visual
simulations. Our CML boiling simulation runs at speeds
ranging from 8 iterations per second for a 128x128x128
lattice to over 1700 iterations per second for a 64x64 lattice.

Section 2 describes CML and other methods for
simulating natural phenomena. Section 3 details our
implementation of CML simulations on programmable
graphics hardware, and Section 4 describes the specific
simulations we have implemented. In Section 5 we discuss
limitations of current hardware and investigate some
solutions. Section 6 concludes.

2 CML and Related Work
The standard approach to simulating natural phenomena is to
solve equations that describe their global behavior. For
example, multiple techniques have been applied to solving
the Navier-Stokes fluid equations [Fedkiw, et al. 2001;Foster
and Metaxas 1997;Stam 1999]. While their results are
typically numerically and visually accurate, many of these
simulations require too much computation (or small lattice
sizes) to be integrated into interactive graphics applications
such as games. CML models, instead of solving for the
global behavior of a phenomenon, model the behavior by a
number of very simple local operations. When aggregated,
these local operations produce a visually accurate
approximation to the desired global behavior.

Figure 1: 3D coupled map lattice simulations running on
graphics hardware. Left: Boiling. Right: Reaction-
Diffusion.

Harris, Coombe, Scheuermann, and Lastra / Simulation on Graphics Hardware

© The Eurographics Association 2002.

A coupled map lattice is a mapping of continuous
dynamic state values to nodes on a lattice that interact (are
‘coupled’) with a set of other nodes in the lattice according
to specified rules. Coupled map lattices were developed by
Kaneko for the purpose of studying spatio-temporal
dynamics and chaos [Kaneko 1993]. Since their introduction,
CML techniques have been used extensively in the fields of
physics and mathematics for the simulation of a variety of
phenomena, including boiling [Yanagita 1992], convection
[Yanagita and Kaneko 1993], cloud formation [Yanagita and
Kaneko 1997], chemical reaction-diffusion [Kapral 1993], and
the formation of sand ripples and dunes [Nishimori and Ouchi
1993]. CML techniques were recently introduced to the field
of computer graphics for the purpose of cloud modeling and
animation [Miyazaki, et al. 2001]. Lattice Boltzmann
computation is a similar technique that has been used for
simulating fluids, particles, and other classes of phenomena
[Qian, et al. 1996].

A CML is an extension of a cellular automaton (CA)
[Toffoli and Margolus 1987;von Neumann 1966;Wolfram 1984]
in which the discrete state values of CA cells are replaced
with continuous real values. Like CA, CML are discrete in
space and time and are a versatile technique for modeling a
wide variety of phenomena. Methods for animating cloud
formation using cellular automata were presented in
[Dobashi, et al. 2000;Nagel and Raschke 1992]. Discrete-state
automata typically require very large lattices in order to
simulate real phenomena, because the discrete states must be
filtered in order to compute real values. By using
continuous-valued state, a CML is able to represent real
physical quantities at each of its nodes.

While a CML model can certainly be made both
numerically and visually accurate [Kaneko 1993], our
implementation on graphics hardware introduces precision
constraints that make numerically accurate simulation
difficult. Therefore, our goal is instead to implement
visually accurate simulation models on graphics hardware, in
the hope that continuing improvement in the speed and
precision of graphics hardware will allow numerically
accurate simulation in the near future.

The systems that have been found to be most amenable to
CML implementation are multidimensional initial-value
partial differential equations. These are the governing
equations for a wide range of phenomena from fluid
dynamics to reaction-diffusion. Based on a set of initial
conditions, the simulation evolves forward in time. The only
requirement is that the equation must first be explicitly
discretized in space and time, which is a standard
requirement for conventional numerical simulation. This
flexibility means that the CML can serve as a model for a
wide class of dynamic systems.

2.1 A CML Simulation Example
To illustrate CML, we describe the boiling simulation of
[Yanagita 1992]. The state of this simulation is the
temperature of a liquid. A heat plate warms the lower layer
of liquid, and temperature is diffused through the liquid. As
the temperature reaches a threshold, the phase changes and
“bubbles” of high temperature form. When phase changes
occur, newly formed bubbles absorb latent heat from the
liquid around them, and temperature differences cause them
to float upward under buoyant force.

Yanagita implements this global behavior using four local
CML operations; Diffusion, Phase change, Buoyancy, and
Latent heat. Each of these operations can be written as a
simple equation. Figures 1, 2 and 7 (see color pate) show this
simulation running on graphics hardware, and Section 4.1
gives details of our implementation. We will use this
simulation as an example throughout this paper.

3 Hardware Implementation
Graphics hardware is an efficient processor of images – it
can use texture images as input, and outputs images via
rendering. Images – arrays of values – map well to state
values on a lattice. Two-dimensional lattices can be
represented by 2D textures, and 3D lattices by 3D textures or
collections of 2D textures. This natural correspondence, as
well as the programmability and performance of graphics
hardware, motivated our research.
3.1 Why Graphics Hardware?
Our primary reason to use graphics hardware is its speed at
imaging operations compared to a conventional CPU. The
CML models we have implemented are very fast, making
them well suited to interactive applications (See Section 4.1).

GPUs were designed as efficient coprocessors for
rendering and shading. The programmability now available
in GPUs such as the NVIDIA GeForce 3 and 4 and the ATI
Radeon 8500 makes them useful coprocessors for more
diverse applications. Since the time between new
generations of GPUs is currently much less than for CPUs,
faster coprocessors are available more often than faster
central processors. GPU performance tracks rapid
improvements in semiconductor technology more closely
than CPU performance. This is because CPUs are designed
for high performance on sequential operations, while GPUs
are optimized for the high parallelism of vertex and fragment
processing [Lindholm, et al. 2001]. Additional transistors can

Figure 2: A sequence of stills (10 iterations apart) from a
2D boiling simulation running on graphics hardware.

Harris, Coombe, Scheuermann, and Lastra / Simulation on Graphics Hardware

© The Eurographics Association 2002.

therefore be used to greater effect in GPU architectures. In
addition, programmable GPUs are inexpensive, readily
available, easily upgradeable, and compatible with multiple
operating systems and hardware architectures.

More importantly, interactive computer graphics
applications have many components vying for processing
time. Often it is difficult to efficiently perform simulation,
rendering, and other computational tasks simultaneously
without a drop in performance. Since our intent is visual
simulation, rendering is an essential part of any solution. By
moving simulation onto the GPU that renders the results of a
simulation, we not only reduce computational load on the
main CPU, but also avoid the substantial bus traffic required
to transmit the results of a CPU simulation to the GPU for
rendering. In this way, methods of dynamic simulation on
the GPU provide an additional tool for load balancing in
complex interactive applications.

Graphics hardware also has disadvantages. The main
problems we have encountered are the difficulty of
programming the GPU and the lack of high precision
fragment operations and storage. These problems are related
– programming difficulty is increased by the effort required
to ensure that precision is conserved wherever possible.

These issues should disappear with time. Higher-level
shading languages have been introduced that make hardware
graphics programming easier [Peercy, et al. 2000;Proudfoot, et
al. 2001]. The same or similar languages will be usable for
programming simulations on graphics hardware. We believe
that the precision of graphics hardware will continue to
increase, and with it the full power of programmability will
be realised.

3.2 General-Purpose Computation
The use of computer graphics hardware for general-purpose
computation has been an area of active research for many
years, beginning on machines like the Ikonas [England 1978],
the Pixel Machine [Potmesil and Hoffert 1989] and Pixel-
Planes 5 [Rhoades, et al. 1992]. The wide deployment of
GPUs in the last several years has resulted in an increase in
experimental research with graphics hardware. [Trendall and
Steward 2000] gives a detailed summary of the types of
computation available on modern GPUs.

Within the realm of graphics applications, programmable
graphics hardware has been used for procedural texturing
and shading [Olano and Lastra 1998; Peercy, et al. 2000;
Proudfoot, et al. 2001; Rhoades, et al. 1992]. Graphics
hardware has also been used for volume visualization
[Cabral, et al. 1994]. Recently, methods for using current and
near-future GPUs for ray tracing computations have been
described in [Carr, et al. 2002] and [Purcell, et al. 2002],
respectively.

Other researchers have found ways to use graphics
hardware for non-graphics applications. The use of
rasterization hardware for robot motion planning is described
in [Lengyel, et al. 1990]. [Hoff, et al. 1999] describes the use
of z-buffer techniques for the computation of Voronoi

diagrams. The PixelFlow SIMD graphics computer [Eyles, et
al. 1997] was used to crack UNIX password encryption
[Kedem and Ishihara 1999], and graphics hardware has been
used in the computation of artificial neural networks [Bohn
1998].

Our work uses CML to simulate dynamic phenomena that
can be described by PDEs. Related to this is the
visualization of flows described by PDEs, which has been
implemented using graphics hardware to accelerate line
integral convolution and Lagrangian-Eulerian advection
[Heidrich, et al. 1999; Jobard, et al. 2001; Weiskopf, et al. 2001].
NVIDIA has demonstrated the Game of Life cellular
automata running on their GPUs, as well as a 2D physically-
based water simulation that operates much like our CML
simulations [NVIDIA 2001a;NVIDIA 2001b].

3.3 Common Operations
A detailed description of the implementation of the specific
simulations that we have modeled using CML would require
more space than we have in this paper, so we will instead
describe a few common CML operations, followed by details
of their implementation. Our goal in these descriptions is to
impart a feel for the kinds of operations that can be
performed using a graphics hardware implementation of a
CML model.
3.3.1 Diffusion and the Laplacian
The divergence of the gradient of a scalar function is called
the Laplacian [Weisstein 1999]:

2 2
2

2 2
(,) .

T T
T x y

x y

∂ ∂
∇ = +

∂ ∂

The Laplacian is one of the most useful tools for working
with partial differential equations. It is an isotropic measure
of the second spatial derivative of a scalar function.
Intuitively, it can be used to detect regions of rapid change,
and for this reason it is commonly used for edge detection in
image processing. The discretized form of this equation is:

2

, 1, 1, , 1 , 1 ,4i j i j i j i j i j i jT T T T T T
− + − +

∇ = + + + − .

The Laplacian is used in all of the CML simulations that
we have implemented. If the results of the application of a
Laplacian operator at a node Ti,j are scaled and then added to
the value of Ti,j itself, the result is diffusion [Weisstein 1999]:

 ' 2

, , ,4
d

i j i j i j

c
T T T= + ∇ . (1)

Here, cd is the coefficient of diffusion. Application of this
diffusion operation to a lattice state will cause the state to
diffuse through the lattice1.
3.3.2 Directional Forces
Most dynamic simulations involve the application of force.
Like all operations in a CML model, forces are applied via

1 See Appendix A for details of our diffusion implementation.

Harris, Coombe, Scheuermann, and Lastra / Simulation on Graphics Hardware

© The Eurographics Association 2002.

computations on the state of a node and its neighbors. As an
example, we describe a buoyancy operator used in
convection and cloud formation simulations [Miyazaki, et al.
2001;Yanagita and Kaneko 1993;Yanagita and Kaneko 1997].

This buoyancy operator uses temperature state T to
compute a buoyant velocity at a node and add it to the node’s
vertical velocity state, v:

 , , , 1, 1,2
[2]bc

i j i j i j i j i jv v T T T
+ −

′ = + − − . (2)

Equation (2) expresses that a node is buoyed upward if its
horizontal neighbors are cooler than it is, and pushed
downward if they are warmer. The strength of the buoyancy
is controlled via the parameter cb.

3.3.3 Computation on Neighbors
Sometimes an operation requires more complex computation
than the arithmetic of the simple buoyancy operation
described above. The buoyancy operation of the boiling
simulation described in Section 2.1 must also account for
phase change, and is therefore more complicated:

, , , , 1 , 12

[() ()],

() tanh[()].
i j i j i j i j i j

c

T T T T T

T T T

σ ρ ρ

ρ α

+ −
′ = − −

= −
 (3)

In Equation (3), s is the buoyancy strength coefficient, and
ρ(T) is an approximation of density relative to temperature,
T. The hyperbolic tangent is used to simulate the rapid
change of density of a substance around the phase change
temperature, Tc. A change in density of a lattice node
relative to its vertical neighbors causes the temperature of the
node to be buoyed upward or downward. The thing to notice
in this equation is that simple arithmetic will not suffice – the
hyperbolic tangent function must be applied to the
temperature at the neighbors above and below node (i,j). We
will discuss how we can compute arbitrary functions using
dependent texturing in Section 3.4.

3.4 State Representation and Storage
Our goal is to maintain all state and operation of our
simulations in the GPU and its associated memory. To this
end, we use the frame buffer like a register array to hold
transient state, and we use textures like main memory arrays

for state storage. Since the frame buffer and textures are
typically limited to storage of 8-bit unsigned integers, state
values must be converted to this format before being written
to texture.

Texture storage can be used for both scalar and vector
data. Because of the four color channels used in image
generation, two-, three-, or four-dimensional vectors can be
stored in each texel of an RGBA texture. If scalar data are
needed, it is often advantageous to store more than one scalar
state in a single texture by using different color channels. In
our CML implementation of the Gray-Scott reaction-
diffusion system, for example, we store the concentrations of
both reactants in the same texture. This is not only efficient
in storage but also in computation since operations that act
equivalently on both concentrations can be performed in
parallel.

Physical simulation also requires the use of signed values.
Most texture storage, however, uses unsigned fixed-point
values. Although fragment-level programmability available
in current GPUs uses signed arithmetic internally, the
unsigned data stored in the textures must be biased and
scaled before and after processing [NVIDIA 2002].

3.5 Implementing CML Operations
An iteration of a CML simulation consists of successive
application of simple operations on the lattice. These
operations consist of three steps: setup the graphics hardware
rendering state, render a single quadrilateral fit to the view
port, and store the rendered results into a texture. We refer to
each of these setup-render-copy operations as a single pass.
In practice, due to limited GPU resources (number of texture
units, number of register combiners, etc.), a CML operation
may span multiple passes.

The setup portion of a pass simply sets the state of the
hardware to correctly perform the rest of the pass. To be
sure that the correct lattice nodes are sampled during the
pass, texels in the input textures must map directly to pixels
in the output of the graphics pipeline. To ensure that this is
true, we set the view port to the resolution of the lattice, and
the view frustum to an orthographic view fit to the lattice so
that there is a one-to-one mapping between pixels in the
rendering buffer and texels in the texture to be updated.

The render-copy portion of each pass performs 4
suboperations: Neighbor Sampling, Computation on
Neighbors, New State Computation, and State Update.
Figure 3 illustrates the mapping of the suboperations to
graphics hardware. Neighbor sampling and Computation on
Neighbors are performed by the programmable texture
mapping hardware. New State Computation performs
arithmetic on the results of the previous suboperations using
programmable texture blending. Finally, State Update feeds
the results of one pass to the next by rendering or copying
the texture blending results to a texture.

Neighbor Sampling: Since state is stored in textures,
neighbor sampling is performed by offsetting texture
coordinates toward the neighbors of the texel being updated.

Figure 3: Components of a CML operation map to
graphics hardware pipeline components.

Harris, Coombe, Scheuermann, and Lastra / Simulation on Graphics Hardware

© The Eurographics Association 2002.

For example, to sample the four nearest neighbor nodes of
node (x,y), the texture coordinates at the corners of the
quadrilateral mentioned above are offset in the direction of
each neighbor by the width of a single texel. Texture
coordinate interpolation ensures that as rasterization
proceeds, every texel’s neighbors will be correctly sampled.
Note that beyond sampling just the nearest neighbors of a
node, weighted averages of nearby nodes can be computed
by exploiting the linear texture interpolation hardware
available in GPUs. An example of this is our single-pass
implementation of 2D diffusion, described in Appendix A.

Care must be taken, though, since the precision used for
the interpolation coefficients is sometimes lower than the rest
of the texture pipeline.

Computation on Neighbors: As described in Section
3.3.3, many simulations compute complex functions of the
neighbors they sample. In many cases, these functions can
be computed ahead of time and stored in a texture for use as
a lookup table. The programmable texture shader
functionality of recent GPUs provides several dependent
texture addressing operations. We have implemented table
lookups using the “DEPENDENT_GB_TEXTURE_
2D_NV” texture shader of the GeForce 3. This shader
provides memory indirect texture addressing – the green and
blue colors read from one texture unit are used as texture
coordinates for a lookup into a second texture unit. By
binding the precomputed lookup table texture to the second
texture unit, we can implement arbitrary function operations
on the values of the nodes (Figure 4).

New State Computation: Once we have sampled the
values of neighboring texels and optionally used them for
function table lookups, we need to compute the new state of
the lattice. We use programmable hardware texture blending
to perform arithmetic operations including addition,
multiplication, and dot products. On the GeForce 3 and 4,
we implement this using register combiners [NVIDIA 2002]
Register combiners take the output of texture shaders and
rasterization as input, and provide arithmetic operations,
user-defined constants, and temporary registers. The result
of these computations is written to the frame buffer.

State Update: Once the new state is computed, we must
store it in a state texture. In our current implementation, we
copy the newly-rendered frame buffer to a texture using the
glCopyTexSubImage2D() instruction in OpenGL. Since all
simulation state is stored in textures, our technique avoids
large data transfers between the CPU and GPU during

simulation and rendering.

3.6 Numerical Range of CML Simulations
The physically based nature of CML simulations means that
the ranges of state values for different simulations can vary
widely. The graphics hardware we use to implement them,
on the other hand, operates only on fixed-point fragment
values in the range [0,1]. This means that we must
normalize the range of a simulation into [0,1] before it can be
implemented in graphics hardware.

Because the hardware uses limited-precision fixed-point
numbers, some simulations will be more robust to this
normalization than others. The robustness of a simulation
depends on several factors. Dynamic range is the ratio
between a simulation's largest absolute value and its smallest
non-zero absolute value. If a simulation has a high dynamic
range, it may not be robust to normalization unless the
precision of computation is high enough to represent the
dynamic range. We refer to a simulation's resolution as the
smallest absolute numerical difference that it must be able to
discern. A simulation with a resolution finer than the
resolution of the numbers used in its computation will not be
robust. Finally, as the arithmetic complexity of a simulation
increases, it will incur more roundoff error, which may
reduce its robustness when using low-precision arithmetic.

For example, the boiling simulation (Section 4.1) has a
range of approximately [0,10], but its values do not get very
close to zero, so its dynamic range is less than ten. Also, its
resolution is fairly coarse, since the event to which it is most
sensitive – phase change – is near the top of its range. For
these reasons, boiling is fairly robust under normalization.
Reaction-diffusion has a range of [0,1] so it does not require
normalization. Its dynamic range, however, is on the order
of 105, which is much higher than that of the 8-bit numbers
stored in textures. Fortunately, by scaling the coefficients of
reaction-diffusion, we can reduce this dynamic range
somewhat to get interesting results. However, as we
describe in Section 4.3, it suffers from precision errors (See
Section 5.1 for more discussion of precision issues). As
more precision becomes available in graphics hardware,
normalization will become less of an issue. When floating
point computation is made available, simulations can be run
within their natural ranges.

4 Results
We have designed and built an interactive framework,
“CMLlab”, for constructing and experimenting with CML
simulations (Figure 5). The user constructs a simulation
from a set of general purpose operations, such as diffusion
and advection, or special purpose operations designed for
specific simulations, such as the buoyancy operations
described in Section 3.3. Each operation processes a set of
input textures and produces a single output texture. The user
connects the outputs and inputs of the selected operations
into a directed acyclic graph. An iteration of the simulation
consists of traversing the graph in depth-first fashion so that
each operation is performed in order. The state textures
resulting from an iteration are used as input state for the next

Figure 4: Arbitrary function lookups are implemented
using dependent texturing in graphics hardware.

Harris, Coombe, Scheuermann, and Lastra / Simulation on Graphics Hardware

© The Eurographics Association 2002.

iteration, and for displaying the simulated system. The
results of intermediate passes in a simulation iteration can be
displayed to the user in place of the result textures. This is
useful for visually debugging the operation of a new
simulation.

While 2D simulations in our framework use only 2D
textures for storage of lattice state, 3D simulations can be
implemented in two ways. The obvious way is to use 3D
textures. However, the poor performance of copying to 3D
textures in current driver implementations would make our
simulations run much slower. Instead, we implement 3D
simulations using a collection of 2D slices to represent the
3D volume. This has disadvantages over using true 3D
textures. For example, we must implement linear filtering
and texture boundary conditions (clamp or repeat) in
software, wheras 3D texture functionality provides these in
hardware.

It is worth noting that we trade optimal performance for
flexibility in the CMLLab framework. Because we want to
allow a variety of models to be built from a set of operations,
we often incur the expense of some extra texture copies in
order to keep operations separate. Thus, our implementation
is not optimal – even faster rates are achievable on the same
hardware by sacrificing operator reuse.

To demonstrate the utility of hardware CML simulation
in interactive 3D graphics applications, we have integrated
the simulation system into a virtual environment built on a
3D game engine, “Wild Magic” [Eberly 2001]. Figure 7 (see
color plate) is an image of a boiling witch’s brew captured
from a real-time demo we built with the engine. The demo
uses our 3D boiling simulation (Section 4.1) and runs at 45
frames per second.

We will now describe three of the CML simulations that
we have implemented. The test computer we used is a PC
with a single 2.0 GHz Pentium 4 processor and 512 MB of
RAM. Tests were performed on this machine with both an
NVIDIA GeForce 3 Ti 500 GPU with 64 MB of RAM, and
an NVIDIA GeForce 4 Ti 4600 GPU with 128 MB of RAM.

4.1 Boiling
We have implemented 2D and 3D boiling simulations as
described in [Yanagita 1992]. Rather than simulate all
components of the boiling phenomenon (temperature,
pressure, velocity, phase of matter, etc.), their model
simulates only the temperature of the liquid as it boils. The
simulation is composed of successive application of thermal
diffusion, bubble formation and buoyancy, latent heat
transfer. Sections 3.3.1 and 3.3.3 described the first two of
these, and Section 2.1 gave an overview of the model. For
details of the latent heat transfer computation, we refer the
reader to [Yanagita 1992]. Our implementation requires
seven passes per iteration for the 2D simulation, and 9 passes
per slice for the 3D simulation. Table 1 shows the
simulation speed for a range of resolutions. For details of
our boiling simulation implementation, see [Harris 2002b].

4.2 Convection
The Rayleigh-Bénard convection CML model of [Yanagita
and Kaneko 1993] simulates convection using four CML
operations: buoyancy (described in 3.3.2), thermal diffusion,
temperature and velocity advection, and viscosity and
pressure effect. The viscosity and pressure effect is
implemented as

2 grad(div)
4

v
p

k
v v v k v′ = + ∇ + ,

where v is the velocity, kv is the viscosity ratio and kp is the
coefficient of the pressure effect. The first two terms of this
equation account for diffusion of the velocity, and the last
term is the flow caused by the gradient of the mass flow
around the lattice [Miyazaki, et al. 2001]. See [Miyazaki, et al.
2001;Yanagita and Kaneko 1993] for details of the discrete
implementation of this operation.

The remaining operation is advection of temperature and
velocity by the velocity field. [Yanagita and Kaneko 1993]
implements this by distributing state from a node to its
neighbors according to the velocity at the node. In our
implementation, this was made difficult by the precision

 Iterations Per Second

Resolution Software GeForce 3 GeForce 4 Speedup

64x64 266.5 1252.9 1752.5 4.7 / 6.6

128x128 61.8 679.0 926.6 11.0 / 15.0

256x256 13.9 221.3 286.6 15.9 / 20.6

512x512 3.3 61.2 82.3 18.5 / 24.9

1024x1024 .9 15.5 21.6 17.2 / 24

32x32x32 25.5 104.3 145.8 4.1 / 5.7

64x64x64 3.2 37.2 61.8 11.6 / 19.3

128x128x128 .4 NA 8.3 NA / 20.8

Table 1: A speed comparison of our hardware CML
boiling simulation to a software version. The speedup
column gives the speedup for both GeForce 3 and 4.

Figure 5: CMLlab, our interactive framework for building
and experimenting with CML simulations.

Harris, Coombe, Scheuermann, and Lastra / Simulation on Graphics Hardware

© The Eurographics Association 2002.

limitations of the hardware, so we used a texture shader-
based advection operation instead. This operation advects
state stored in a texture using the GL_OFFSET_TEXTURE_
2D_NV dependent texture addressing mode of the GeForce 3
and 4. A description of this method can be found in
[Weiskopf, et al. 2001]. Our 2D convection implementation
(Figure 8 in the color plate section) requires 10 passes per
iteration. We have not implemented a 3D convection
simulation because GeForce 3 and 4 do not have a 3D
equivalent of the offset texture operation.

Due to the precision limitations of the graphics hardware,
our implementation of convection did not behave exactly as
described by [Yanagita and Kaneko 1993]. We do observe the
formation of convective rolls, but the motion of both the
temperature and velocity fields is quite turbulent. We
believe that this is a result of low-precision arithmetic.

4.3 Reaction-Diffusion
Reaction-Diffusion processes were proposed by [Turing
1952] and introduced to computer graphics by [Turk
1991;Witkin and Kass 1991]. They are a well-studied model
for the interaction of chemical reactants, and are interesting
due to their complex and often chaotic behavior. The
patterns that emerge are reminiscent of patterns occurring in
nature [Lee, et al. 1993]. We implemented the Gray-Scott
model, as described in [Pearson 1993]. This is a two-chemical
system defined by the initial value partial differential
equations:

2 2

2 2

(1)

() ,

u

v

U
D U UV F U

t
V

D V UV F k V
t

∂
= ∇ − + −

∂

∂
= ∇ + − +

∂

where F, k, Du, and Dv. are parameters given in [Pearson
1993]. We have implemented 2D and 3D versions of this
process, as shown in Figure 5 (2D), and Figures 1 and 9 (3D,
on color plate). We found reaction-diffusion relatively
simple to implement in our framework because we were able
to reuse our existing diffusion operator. In 2D this

simulation requires two passes per iteration, and in 3D it
requires three passes per slice. A 256x256 lattice runs at 400
iterations per second in our interactive framework, and a
128x128x32 lattice runs at 60 iterations per second.

The low precision of the GeForce 3 and 4 reduces the
variety of patterns that our implementation of the Gray-Scott
model produces. We have seen a variety of results, but much
less diversity than produced by a floating point
implementation. As with convection, this appears to be
caused by the effects of low-precision arithmetic.

5 Hardware Limitations
While current GPUs make a good platform for CML
simulation, they are not without problems. Some of these
problems are performance problems of the current
implementation, and may not be issues in the near future.
NVIDIA has shown in the past that slow performance can
often be alleviated via optimization of the software drivers
that accompany the GPU. Other limitations are more
fundamental.

Most of the implementation limitations that we
encountered were limitations that affected performance. We
have found glCopyTexSubImage3D(), which copies the
frame buffer to a slice of a 3D texture, to be much slower (up
to three orders of magnitude) than glCopyTexSubImage2D()
for the same amount of data. This prevented us from using
3D textures in our implementation. Once this problem is
alleviated, we expect a 3D texture implementation to be
faster and easier to implement, since it will remove the need
to bind multiple textures to sample neighbors in the third
dimension. Also, 3D textures provide hardware linear
interpolation and boundary conditions (periodic or fixed) in
all three dimensions. With our slice-based implementation,
we must interpolate and handle boundary conditions in the
third dimension in software.

The ability to render to texture will also provide a speed
improvement, as we estimate that in a complex 3D
simulation, much of the processing time is spent copying
rendered data from the frame buffer to textures (typically one
copy per pass). When using 3D textures, we will need the
ability to render to a slice of a 3D texture.

5.1 Precision
The hardware limitation that causes the most problems to

our implementation is precision. The register combiners in
the GeForce 3 and 4 perform arithmetic using nine-bit signed
fixed-point values. Without floating point, the programmer
must scale and bias values to maintain them in ranges that
maximize precision. This is not only difficult, it is subject to
arithmetic error. Some simulations (such as boiling) handle
this error well, and behave as predicted by a floating point
implementation. Others, such as our reaction-diffusion
implementation, are more sensitive to precision errors.

We have done some analysis of the error introduced by
low precision and experiments to determine how much
precision is needed (For full details, see [Harris 2002a]). We
hypothesize that the diffusion operation is very susceptible to

Figure 6: High-precision fragment computations in near
future graphics hardware will enable accurate simulation of
reaction-diffusion at hundreds of iterations per second.

Harris, Coombe, Scheuermann, and Lastra / Simulation on Graphics Hardware

© The Eurographics Association 2002.

roundoff error, because in our experiments in CMLlab,
iterated application of a diffusion operator never fully
diffuses its input. We derive the error induced by each
application of diffusion (in 2D) to a node (i,j) as

,

3
(3)

4d i j

d
xε ε≈ + + ,

where d is the diffusion coefficient, xi,j is the value at node (i,
j), and ε is the amount of roundoff error in each arithmetic
operation. Since d and xi,j are in the range [0,1], this error is
bounded above by 4.75dε ε≤ . With 8 bits of precision, ε is
at most 2-9. This error is fairly large, meaning that a
simulation that is sensitive to small numbers will quickly
diverge.

In an attempt to better understand the precision needs of
our more sensitive simulations, we implemented a software
version of our reaction-diffusion simulation with adjustable
fixed-point precision. Through experimentation, we have
found that with 14 or more bits of fixed-point precision, the
behavior of this simulation is visually very similar to our
single-precision floating-point implementation. Like the
floating-point version, a diverse variety of patterns grow,
evolve, and sometimes develop unstable formations that
never cease to change. Figure 6 shows a variety of patterns
generated with this 14-bit fixed-point simulation.

Graphics hardware manufacturers are quickly moving
toward higher-quality pixels. This goal, along with
increasing programmability, makes high-precision
computation essential. Higher precision, including floating-
point fragment values, will become a standard feature of
GPUs in the near future [Spitzer 2002]. With the increasing
precision and programmability of GPUs, we believe that
CML methods for simulating natural phenomena using
graphics hardware will become very useful.

6 Conclusions and Future Work
In this paper, we have described a method for simulating a
variety of dynamic phenomena using graphics hardware. We
presented the coupled map lattice as a simple and flexible
simulation technique, and showed how CML operations map
to computer graphics hardware operations. We have
described common CML operations and how they can be
implemented on programmable GPUs.

Our hardware CML implementation shows a substantial
speed increase (up to 25 times on a GeForce 4) over the same
simulations implemented to run on a Pentium 4 CPU.
However, this comparison (and the speedup numbers in
Table 1) should be taken with a grain of salt. While our
CPU-based CML simulator is an efficient, straightforward
implementation that obeys common cache coherence
principles, it is not highly optimized, and could be
accelerated by using vectorized CPU instructions. Our
graphics hardware implementation is not highly optimized
either. We sacrifice optimal speed for flexibility. The CPU
version is also written to use single precision floats, while
the GPU version uses fixed-point numbers with much less

precision. Nevertheless, we feel that it would be difficult, if
not impossible, to achieve a 25x speedup over our current
CPU implementation by optimizing the code and using lower
precision numbers. A more careful comparison and
optimized simulations on both platforms would be useful in
the future.

“CMLlab”, our flexible framework for building CML
models, allows a user to experiment with simulations
running on graphics processors. We have described various
2D and 3D simulations that we have implemented in this
framework. We have also integrated our CML framework
with a 3D game engine to demonstrate the use of 3D CML
models in interactive scenes and virtual environments. In the
future, we would like to add more flexibility to CMLlab.
Users currently cannot define new, custom operations
without writing C++ code. It would be possible, however, to
provide generic, scriptable operators, since the user
microcode that runs on the GPU can be dynamically loaded.

We have described the problems we encountered in
implementing CML in graphics hardware, such as limited
precision and 3D texturing performance problems. We
believe that these problems will be alleviated in near future
generations of graphics hardware. With the continued
addition of more texture units, memory, precision, and more
flexible programmability, graphics hardware will become an
even more powerful platform for visual simulation. Some
relatively simple extensions to current graphics hardware and
APIs would benefit CML and PDE simulation. For example,
the ability to render to 3D textures could simplify and
accelerate each pass of our simulations. One avenue for
future research is to increase parallelization of simulations on
graphics hardware. Currently, it is difficult to add multiple
GPUs to a single computer because PCs have a single AGP
port. If future PC hardware adds support for multiple GPUs,
powerful multiprocessor machines could be built with these
inexpensive processors.

We plan to continue exploring the use of CML on current
and future generations of graphics hardware. We are
interested in porting our system to ATI Radeon hardware.
The Radeon 8500 can sample more textures per pass and has
more programmable texture addressing than GeForce 3,
which could add power to CML simulations. Also, our
current framework relies mostly on the power of the
fragment processing pipeline, and uses none of the power
available in the programmable vertex engine. We could
greatly increase the complexity of simulations by taking
advantage of this. Currently, this would incur additional cost
for feedback of the output of the fragment pipeline (through
the main memory) and back into the vertex pipeline, but
depending on the application, it may be worth the expense.
GPU manufacturers could improve the performance of this
feedback by allowing textures in memory to be interpreted as
vertex meshes for processing by the vertex engine, thus
avoiding unneccessary transfers back to the host.

We hope to implement the cloud simulation described by
[Miyazaki, et al. 2001] in the near future, as well as other

Harris, Coombe, Scheuermann, and Lastra / Simulation on Graphics Hardware

© The Eurographics Association 2002.

dynamic phenomena. Also, since the boiling simulation of
[Yanagita 1992] models only temperature, and disregards
surface tension, the bubbles are not round. We are interested
in extending this simulation to improve its realism. We plan
to continue exploring the use of computer graphics hardware
for general computation. As an example, the anisotropic
diffusion that can be performed on a GPU may be useful for
image-processing and computer vision applications.

Acknowledgements
The authors would like to thank Steve Molnar, John Spitzer
and the NVIDIA Developer Relations team for answering
many questions. This work was supported in part by
NVIDIA Corporation, US NIH National Center for Research
Resources Grant Number P41 RR 02170, US Office of
Naval Research N00014-01-1-0061, US Department of
Energy ASCI program, and National Science Foundation
grants ACR-9876914 and IIS-0121293.

A Implementation of Diffusion
On GeForce 3 hardware, the diffusion operation can be
implemented more efficiently than the Laplacian operator
itself. To do so, we rewrite Equation (1) as

'

, , 1, 1, , 1 , 1

4

, (,)
1

(1) ()
4

1
[(1)],

4 k

d
i j d i j i j i j i j i j

d i j d n i j
k

c
T c T T T T T

c T c T

− + − +

=

= − + + + +

= − +∑

where nk(x,y) represents the kth nearest neighbor of (x, y). In
this form, we see that the diffusion operator is the average of
four weighted sums of the center texel, Ti,j and its four
nearest neighbor texels. These weighted sums are actually
linear interpolation computations, with cd as the parameter of
interpolation. This means that we can implement the
diffusion operation described by Equation 3 by enabling
linear texture filtering, and using texture coordinate offsets
of cd ÿ w, where w is the width of a texel as described in
Section 3.5.

References
[Bohn 1998] Bohn, C.-A. Kohonen Feature Mapping
Through Graphics Hardware. In Proceedings of 3rd Int.
Conference on Computational Intelligence and
Neurosciences 1998. 1998.
[Cabral, et al. 1994] Cabral, B., Cam, N. and Foran, J.
Accelerated Volume Rendering and Tomographic
Reconstruction Using Texture Mapping Hardware. In
Proceedings of Symposium on Volume Visualization 1994,
91-98. 1994.
[Carr, et al. 2002] Carr, N.A., Hall, J.D. and Hart, J.C. The
Ray Engine. In Proceedings of SIGGRAPH / Eurographics
Workshop on Graphics Hardware 2002. 2002.
[Dobashi, et al. 2000] Dobashi, Y., Kaneda, K., Yamashita,
H., Okita, T. and Nishita, T. A Simple, Efficient Method for
Realistic Animation of Clouds. In Proceedings of
SIGGRAPH 2000, ACM Press / ACM SIGGRAPH, 19-28.
2000.

[Eberly 2001] Eberly, D.H. 3D Game Engine Design.
Morgan Kaufmann Publishers. 2001.
[England 1978] England, J.N. A system for interactive
modeling of physical curved surface objects. In Proceedings
of SIGGRAPH 78 1978, 336-340. 1978.
[Eyles, et al. 1997] Eyles, J., Molnar, S., Poulton, J., Greer,
T. and Lastra, A. PixelFlow: The Realization. In Proceedings
of 1997 SIGGRAPH / Eurographics Workshop on Graphics
Hardware 1997, ACM Press, 57-68. 1997.
[Fedkiw, et al. 2001] Fedkiw, R., Stam, J. and Jensen, H.W.
Visual Simulation of Smoke. In Proceedings of SIGGRAPH
2001, ACM Press / ACM SIGGRAPH. 2001.
[Foster and Metaxas 1997] Foster, N. and Metaxas, D.
Modeling the Motion of a Hot, Turbulent Gas. In
Proceedings of SIGGRAPH 1997, ACM Press / ACM
SIGGRAPH, 181-188. 1997.
[Harris 2002a] Harris, M.J. Analysis of Error in a CML
Diffusion Operation. University of North Carolina Technical
Report TR02-015.
http://www.cs.unc.edu/~harrism/cml/dl/HarrisTR02-015.pdf. 2002a.
[Harris 2002b] Harris, M.J. Implementation of a CML
Boiling Simulation using Graphics Hardware. University of
North Carolina Technical Report TR02-016.
http://www.cs.unc.edu/~harrism/cml/dl/HarrisTR02-016.pdf. 2002b.
[Heidrich, et al. 1999] Heidrich, W., Westermann, R., Seidel,
H.-P. and Ertl, T. Applications of Pixel Textures in
Visualization and Realistic Image Synthesis. In Proceedings
of ACM Symposium on Interactive 3D Graphics 1999. 1999.
[Hoff, et al. 1999] Hoff, K.E.I., Culver, T., Keyser, J., Lin,
M. and Manocha, D. Fast Computation of Generalized
Voronoi Diagrams Using Graphics Hardware. In
Proceedings of SIGGRAPH 1999, ACM / ACM Press, 277-
286. 1999.
[Jobard, et al. 2001] Jobard, B., Erlebacher, G. and Hussaini,
M.Y. Lagrangian-Eulerian Advection for Unsteady Flow
Visualization. In Proceedings of IEEE Visualization 2001.
2001.
[Kaneko 1993] Kaneko, K. (ed.), Theory and applications of
coupled map lattices. Wiley, 1993.
[Kapral 1993] Kapral, R. Chemical Waves and Coupled Map
Lattices. in Kaneko, K. ed. Theory and Applications of
Coupled Map Lattices, Wiley, 135-168. 1993.
[Kedem and Ishihara 1999] Kedem, G. and Ishihara, Y.
Brute Force Attack on UNIX Passwords with SIMD
Computer. In Proceedings of The 8th USENIX Security
Symposium 1999. 1999.
[Lee, et al. 1993] Lee, K.J., McCormick, W.D., Ouyang, Q.
and Swinn, H.L. Pattern Formation by Interacting Chemical
Fronts. Science, 261. 192-194. 1993.
[Lengyel, et al. 1990] Lengyel, J., Reichert, M., Donald, B.R.
and Greenberg, D.P. Real-Time Robot Motion Planning
Using Rasterizing Computer Graphics Hardware. In
Proceedings of SIGGRAPH 1990, 327-335. 1990.

Harris, Coombe, Scheuermann, and Lastra / Simulation on Graphics Hardware

© The Eurographics Association 2002.

[Lindholm, et al. 2001] Lindholm, E., Kilgard, M. and
Moreton, H. A User Programmable Vertex Engine. In
Proceedings of SIGGRAPH 2001, ACM Press / ACM
SIGGRAPH, 149-158. 2001.
[Miyazaki, et al. 2001] Miyazaki, R., Yoshida, S., Dobashi,
Y. and Nishita, T. A Method for Modeling Clouds Based on
Atmospheric Fluid Dynamics. In Proceedings of The Ninth
Pacific Conference on Computer Graphics and Applications
2001, IEEE Computer Society Press, 363-372. 2001.
[Nagel and Raschke 1992] Nagel, K. and Raschke, E. Self-
organizing criticality in cloud formation? Physica A, 182.
519-531. 1992.
[Nishimori and Ouchi 1993] Nishimori, H. and Ouchi, N.
Formation of Ripple Patterns and Dunes by Wind-Blown
Sand. Physical Review Letters, 71 1. 197-200. 1993.
[NVIDIA 2002] NVIDIA. NVIDIA OpenGL Extension
Specifications.
http://developer.nvidia.com/view.asp?IO=nvidia_opengl_specs. 2002.
[NVIDIA 2001a] NVIDIA. NVIDIA OpenGL Game Of Life
Demo. http://developer.nvidia.com/view.asp?IO=ogl_gameoflife.
2001a.
[NVIDIA 2001b] NVIDIA. NVIDIA Procedural Texture
Physics Demo.
http://developer.nvidia.com/view.asp?IO=ogl_dynamic_bumpreflection.
2001b.
[Olano and Lastra 1998] Olano, M. and Lastra, A. A Shading
Language on Graphics Hardware: The PixelFlow Shading
System. In Proceedings of SIGGRAPH 1998, ACM / ACM
Press, 159-168. 1998.
[Pearson 1993] Pearson, J.E. Complex Patterns in a Simple
System. Science, 261. 189-192. 1993.
[Peercy, et al. 2000] Peercy, M.S., Olano, M., Airey, J. and
Ungar, P.J. Interactive Multi-Pass Programmable Shading. In
Proceedings of SIGGRAPH 2000, ACM Press / ACM
SIGGRAPH, 425-432. 2000.
[Potmesil and Hoffert 1989] Potmesil, M. and Hoffert, E.M.
The Pixel Machine: A Parallel Image Computer. In
Proceedings of SIGGRAPH 89 1989, ACM, 69-78. 1989.
[Proudfoot, et al. 2001] Proudfoot, K., Mark, W.R.,
Tzvetkov, S. and Hanrahan, P. A Real-Time Procedural
Shading System for Programmable Graphics Hardware. In
Proceedings of SIGGRAPH 2001, ACM Press / ACM
SIGGRAPH, 159-170. 2001.
[Purcell, et al. 2002] Purcell, T.J., Buck, I., Mark, W.R. and
Hanrahan, P. Ray Tracing on Programmable Graphics
Hardware. In Proceedings of SIGGRAPH 2002, ACM /
ACM Press. 2002.
[Qian, et al. 1996] Qian, Y.H., Succi, S. and Orszag, S.A.
Recent Advances in Lattice Boltzmann Computing. in
Stauffer, D. ed. Annual Reviews of Computational Physics
III, World Scientific, 195-242. 1996.
[Rhoades, et al. 1992] Rhoades, J., Turk, G., Bell, A., State,
A., Neumann, U. and Varshney, A. Real-Time Procedural
Textures. In Proceedings of Symposium on Interactive 3D
Graphics 1992, ACM / ACM Press, 95-100. 1992.

[Spitzer 2002] Spitzer, J. Shading and Game Development
(Presentation on NVIDIA Technology). IBM EDGE
Workshop. 2002.
[Stam 1999] Stam, J. Stable Fluids. In Proceedings of
SIGGRAPH 1999, ACM Press / ACM SIGGRAPH, 121-
128. 1999.
[Toffoli and Margolus 1987] Toffoli, T. and Margolus, N.
Cellular Automata Machines. The MIT Press. 1987.
[Trendall and Steward 2000] Trendall, C. and Steward, A.J.
General Calculations using Graphics Hardware, with
Applications to Interactive Caustics. In Proceedings of
Eurogaphics Workshop on Rendering 2000, Springer, 287-
298. 2000.
[Turing 1952] Turing, A.M. The chemical basis of
morphogenesis. Transactions of the Royal Society of London,
B237. 37-72. 1952.
[Turk 1991] Turk, G. Generating Textures on Arbitrary
Surfaces Using Reaction-Diffusion. In Proceedings of
SIGGRAPH 1991, ACM Press / ACM SIGGRAPH, 289-
298. 1991.
[von Neumann 1966] von Neumann, J. Theory of Self-
Reproducing Automata. University of Illinois Press. 1966.
[Weiskopf, et al. 2001] Weiskopf, D., Hopf, M. and Ertl, T.
Hardware-Accelerated Visualization of Time-Varying 2D
and 3D Vector Fields by Texture Advection via
Programmable Per-Pixel Operations. In Proceedings of
Vision, Modeling, and Visualization 2001, 439-446. 2001.
[Weisstein 1999] Weisstein, E.W. CRC Concise
Encyclopedia of Mathematics. CRC Press. 1999.
[Witkin and Kass 1991] Witkin, A. and Kass, M. Reaction-
Diffusion Textures. In Proceedings of SIGGRAPH 1991,
ACM Press / ACM SIGGRAPH, 299-308. 1991.
[Wolfram 1984] Wolfram, S. Cellular automata as models of
complexity. Nature, 311. 419-424. 1984.
[Yanagita 1992] Yanagita, T. Phenomenology of boiling: A
coupled map lattice model. Chaos, 2 3. 343-350. 1992.
[Yanagita and Kaneko 1993] Yanagita, T. and Kaneko, K.
Coupled map lattice model for convection. Physics Letters A,
175. 415-420. 1993.
[Yanagita and Kaneko 1997] Yanagita, T. and Kaneko, K.
Modeling and Characterization of Cloud Dynamics. Physical
Review Letters, 78 22. 4297-4300. 1997.

Harris, Coombe, Scheuermann, and Lastra / Simulation on Graphics Hardware

© The Eurographics Association 2002.

Figure 7: A CML boiling simulation running in an
interactive 3D environment (the steam is a particle
system).

Figure 9: A sequence from our 3D version of the Gray-Scott reaction-diffusion model.

Figure 8: A CML convection simulation. The left panel
shows temperature; the right panel shows 2D velocity
encoded in the blue and green color channels.

