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Abstract 
In this paper, we present a method for real-time visual simulation of diverse dynamic phenomena using programmable graphics 
hardware.  The simulations we implement use an extension of cellular automata known as the coupled map lattice (CML).  CML 
represents the state of a dynamic system as continuous values on a discrete lattice.  In our implementation we store the lattice 
values in a texture, and use pixel-level programming to implement simple next-state computations on lattice nodes and their 
neighbors.  We apply these computations successively to produce interactive visual simulations of convection, reaction-diffusion, 
and boiling.  We have built an interactive framework for building and experimenting with CML simulations running on graphics 
hardware, and have integrated them into interactive 3D graphics applications. 
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1  Introduction 
Interactive 3D graphics environments, such as games, virtual 
environments, and training and flight simulators are 
becoming increasingly visually realistic, in part due to the 
power of graphics hardware.  However, these scenes often 
lack rich dynamic phenomena, such as fluids, clouds, and 
smoke, which are common to the real world.   

A recent approach to the simulation of dynamic 
phenomena, the coupled map lattice [Kaneko 1993], uses a 
set of simple local operations to model complex global 
behavior. When implemented using computer graphics 
hardware, coupled map lattices (CML) provide a simple, fast 
and flexible method for the visual simulation of a wide 
variety of dynamic systems and phenomena.   

In this paper we will describe the implementation of 
CML systems with current graphics hardware, and 
demonstrate the flexibility and performance of these systems 
by presenting several fast interactive 2D and 3D visual 
simulations.  Our CML boiling simulation runs at speeds 
ranging from 8 iterations per second for a 128x128x128 
lattice to over 1700 iterations per second for a 64x64 lattice. 

Section 2 describes CML and other methods for 
simulating natural phenomena.  Section 3  details our 
implementation of CML simulations on programmable 
graphics hardware, and Section 4 describes the specific 
simulations we have implemented.  In Section 5 we discuss 
limitations of current hardware and investigate some 
solutions.  Section 6 concludes. 

2  CML and Related Work 
The standard approach to simulating natural phenomena is to 
solve equations that describe their global behavior.  For 
example, multiple techniques have been applied to solving 
the Navier-Stokes fluid equations [Fedkiw, et al. 2001;Foster 
and Metaxas 1997;Stam 1999].  While their results are 
typically numerically and visually accurate, many of these 
simulations require too much computation (or small lattice 
sizes) to be integrated into interactive graphics applications 
such as games.  CML models, instead of solving for the 
global behavior of a phenomenon, model the behavior by a 
number of very simple local operations.  When aggregated, 
these local operations produce a visually accurate 
approximation to the desired global behavior. 

Figure 1: 3D coupled map lattice simulations running on
graphics hardware.  Left: Boiling.  Right: Reaction-
Diffusion. 
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A coupled map lattice is a mapping of continuous 
dynamic state values to nodes on a lattice that interact (are 
‘coupled’) with a set of other nodes in the lattice according 
to specified rules.  Coupled map lattices were developed by 
Kaneko for the purpose of studying spatio-temporal 
dynamics and chaos [Kaneko 1993].  Since their introduction, 
CML techniques have been used extensively in the fields of 
physics and mathematics for the simulation of a variety of 
phenomena, including boiling [Yanagita 1992], convection 
[Yanagita and Kaneko 1993], cloud formation [Yanagita and 
Kaneko 1997], chemical reaction-diffusion [Kapral 1993], and 
the formation of sand ripples and dunes [Nishimori and Ouchi 
1993].  CML techniques were recently introduced to the field 
of computer graphics for the purpose of cloud modeling and 
animation [Miyazaki, et al. 2001].  Lattice Boltzmann 
computation is a similar technique that has been used for 
simulating fluids, particles, and other classes of phenomena 
[Qian, et al. 1996].  

A CML is an extension of a cellular automaton (CA) 
[Toffoli and Margolus 1987;von Neumann 1966;Wolfram 1984] 
in which the discrete state values of CA cells are replaced 
with continuous real values.  Like CA, CML are discrete in 
space and time and are a versatile technique for modeling a 
wide variety of phenomena.   Methods for animating cloud 
formation using cellular automata were presented in 
[Dobashi, et al. 2000;Nagel and Raschke 1992].  Discrete-state 
automata typically require very large lattices in order to 
simulate real phenomena, because the discrete states must be 
filtered in order to compute real values.  By using 
continuous-valued state, a CML is able to represent real 
physical quantities at each of its nodes.  

While a CML model can certainly be made both 
numerically and visually accurate [Kaneko 1993], our 
implementation on graphics hardware introduces precision 
constraints that make numerically accurate simulation 
difficult.  Therefore, our goal is instead to implement 
visually accurate simulation models on graphics hardware, in 
the hope that continuing improvement in the speed and 
precision of graphics hardware will allow numerically 
accurate simulation in the near future. 

The systems that have been found to be most amenable to 
CML implementation are multidimensional initial-value 
partial differential equations. These are the governing 
equations for a wide range of phenomena from fluid 
dynamics to reaction-diffusion. Based on a set of initial 
conditions, the simulation evolves forward in time.  The only 
requirement is that the equation must first be explicitly 
discretized in space and time, which is a standard 
requirement for conventional numerical simulation. This 
flexibility means that the CML can serve as a model for a 
wide class of dynamic systems. 

2.1 A CML Simulation Example  
To illustrate CML, we describe the boiling simulation of 
[Yanagita 1992]. The state of this simulation is the 
temperature of a liquid.  A heat plate warms the lower layer 
of liquid, and temperature is diffused through the liquid. As 
the temperature reaches a threshold, the phase changes and 
“bubbles” of high temperature form. When phase changes 
occur, newly formed bubbles absorb latent heat from the 
liquid around them, and temperature differences cause them 
to float upward under buoyant force.   

Yanagita implements this global behavior using four local 
CML operations; Diffusion, Phase change, Buoyancy, and 
Latent heat.  Each of these operations can be written as a 
simple equation. Figures 1, 2 and 7 (see color pate) show this 
simulation running on graphics hardware, and Section 4.1 
gives details of our implementation. We will use this 
simulation as an example throughout this paper. 

3  Hardware Implementation 
Graphics hardware is an efficient processor of images – it 
can use texture images as input, and outputs images via 
rendering.  Images – arrays of values – map well to state 
values on a lattice.  Two-dimensional lattices can be 
represented by 2D textures, and 3D lattices by 3D textures or 
collections of 2D textures.  This natural correspondence, as 
well as the programmability and performance of graphics 
hardware, motivated our research. 
3.1 Why Graphics Hardware? 
Our primary reason to use graphics hardware is its speed at 
imaging operations compared to a conventional CPU.  The 
CML models we have implemented are very fast, making 
them well suited to interactive applications (See Section 4.1). 

GPUs were designed as efficient coprocessors for 
rendering and shading.  The programmability now available 
in GPUs such as the NVIDIA GeForce 3 and 4 and the ATI 
Radeon 8500 makes them useful coprocessors for more 
diverse applications.  Since the time between new 
generations of GPUs is currently much less than for CPUs, 
faster coprocessors are available more often than faster 
central processors.  GPU performance tracks rapid 
improvements in semiconductor technology more closely 
than CPU performance.  This is because CPUs are designed 
for high performance on sequential operations, while GPUs 
are optimized for the high parallelism of vertex and fragment 
processing [Lindholm, et al. 2001].  Additional transistors can 

Figure 2: A sequence of stills (10 iterations apart) from a 
2D boiling simulation running on graphics hardware. 
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therefore be used to greater effect in GPU architectures.  In 
addition, programmable GPUs are inexpensive, readily 
available, easily upgradeable, and compatible with multiple 
operating systems and hardware architectures. 

More importantly, interactive computer graphics 
applications have many components vying for processing 
time.  Often it is difficult to efficiently perform simulation, 
rendering, and other computational tasks simultaneously 
without a drop in performance.  Since our intent is visual 
simulation, rendering is an essential part of any solution.  By 
moving simulation onto the GPU that renders the results of a 
simulation, we not only reduce computational load on the 
main CPU, but also avoid the substantial bus traffic required 
to transmit the results of a CPU simulation to the GPU for 
rendering.  In this way, methods of dynamic simulation on 
the GPU provide an additional tool for load balancing in 
complex interactive applications. 

Graphics hardware also has disadvantages.  The main 
problems we have encountered are the difficulty of 
programming the GPU and the lack of high precision 
fragment operations and storage.  These problems are related 
– programming difficulty is increased by the effort required 
to ensure that precision is conserved wherever possible.  

These issues should disappear with time.  Higher-level 
shading languages have been introduced that make hardware 
graphics programming easier [Peercy, et al. 2000;Proudfoot, et 
al. 2001].  The same or similar languages will be usable for 
programming simulations on graphics hardware.  We believe 
that the precision of graphics hardware will continue to 
increase, and with it the full power of programmability will 
be realised. 

3.2 General-Purpose Computation 
The use of computer graphics hardware for general-purpose 
computation has been an area of active research for many 
years, beginning on machines like the Ikonas [England 1978], 
the Pixel Machine [Potmesil and Hoffert 1989] and Pixel-
Planes 5 [Rhoades, et al. 1992].  The wide deployment of 
GPUs in the last several years has resulted in an increase in 
experimental research with graphics hardware.  [Trendall and 
Steward 2000] gives a detailed summary of the types of 
computation available on modern GPUs.   

Within the realm of graphics applications, programmable 
graphics hardware has been used for procedural texturing 
and shading [Olano and Lastra 1998; Peercy, et al. 2000; 
Proudfoot, et al. 2001; Rhoades, et al. 1992].  Graphics 
hardware has also been used for volume visualization 
[Cabral, et al. 1994].  Recently, methods for using current and 
near-future GPUs for ray tracing computations have been 
described in [Carr, et al. 2002] and [Purcell, et al. 2002], 
respectively. 

Other researchers have found ways to use graphics 
hardware for non-graphics applications.  The use of 
rasterization hardware for robot motion planning is described 
in [Lengyel, et al. 1990].  [Hoff, et al. 1999] describes the use 
of z-buffer techniques for the computation of Voronoi 

diagrams.  The PixelFlow SIMD graphics computer [Eyles, et 
al. 1997] was used to crack UNIX password encryption 
[Kedem and Ishihara 1999], and graphics hardware has been 
used in the computation of artificial neural networks [Bohn 
1998]. 

Our work uses CML to simulate dynamic phenomena that 
can be described by PDEs.  Related to this is the 
visualization of flows described by PDEs, which has been 
implemented using graphics hardware to accelerate line 
integral convolution and Lagrangian-Eulerian advection 
[Heidrich, et al. 1999; Jobard, et al. 2001; Weiskopf, et al. 2001]. 
NVIDIA has demonstrated the Game of Life cellular 
automata running on their GPUs, as well as a 2D physically-
based water simulation that operates much like our CML 
simulations [NVIDIA 2001a;NVIDIA 2001b]. 

3.3 Common Operations 
A detailed description of the implementation of the specific 
simulations that we have modeled using CML would require 
more space than we have in this paper, so we will instead 
describe a few common CML operations, followed by details 
of their implementation.  Our goal in these descriptions is to 
impart a feel for the kinds of operations that can be 
performed using a graphics hardware implementation of a 
CML model. 
3.3.1 Diffusion and the Laplacian 
The divergence of the gradient of a scalar function is called 
the Laplacian [Weisstein 1999]: 

2 2
2

2 2
( , ) .

T T
T x y

x y

∂ ∂
∇ = +

∂ ∂
 

The Laplacian is one of the most useful tools for working 
with partial differential equations.  It is an isotropic measure 
of the second spatial derivative of a scalar function.  
Intuitively, it can be used to detect regions of rapid change, 
and for this reason it is commonly used for edge detection in 
image processing.  The discretized form of this equation is: 

2
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− + − +
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The Laplacian is used in all of the CML simulations that 
we have implemented.  If the results of the application of a 
Laplacian operator at a node Ti,j are scaled and then added to 
the value of Ti,j itself, the result is diffusion [Weisstein 1999]: 

 ' 2

, , ,4
d

i j i j i j

c
T T T= + ∇ . (1) 

Here, cd is the coefficient of diffusion. Application of this 
diffusion operation to a lattice state will cause the state to 
diffuse through the lattice1. 
3.3.2 Directional Forces 
Most dynamic simulations involve the application of force.  
Like all operations in a CML model, forces are applied via 

                                                 
1 See Appendix A for details of our diffusion implementation. 
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computations on the state of a node and its neighbors.  As an 
example, we describe a buoyancy operator used in 
convection and cloud formation simulations [Miyazaki, et al. 
2001;Yanagita and Kaneko 1993;Yanagita and Kaneko 1997]. 

This buoyancy operator uses temperature state T to 
compute a buoyant velocity at a node and add it to the node’s 
vertical velocity state, v: 

 , , , 1, 1,2
[2 ]bc

i j i j i j i j i jv v T T T
+ −

′ = + − − . (2) 

Equation (2) expresses that a node is buoyed upward if its 
horizontal neighbors are cooler than it is, and pushed 
downward if they are warmer. The strength of the buoyancy 
is controlled via the parameter cb. 

3.3.3 Computation on Neighbors 
Sometimes an operation requires more complex computation 
than the arithmetic of the simple buoyancy operation 
described above.  The buoyancy operation of the boiling 
simulation described in Section 2.1 must also account for 
phase change, and is therefore more complicated:  
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[ ( ) ( )],
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In Equation (3), s is the buoyancy strength coefficient, and 
ρ(T) is an approximation of density relative to temperature, 
T.  The hyperbolic tangent is used to simulate the rapid 
change of density of a substance around the phase change 
temperature, Tc.  A change in density of a lattice node 
relative to its vertical neighbors causes the temperature of the 
node to be buoyed upward or downward.  The thing to notice 
in this equation is that simple arithmetic will not suffice – the 
hyperbolic tangent function must be applied to the 
temperature at the neighbors above and below node (i,j).  We 
will discuss how we can compute arbitrary functions using 
dependent texturing in Section 3.4. 

3.4 State Representation and Storage 
Our goal is to maintain all state and operation of our 
simulations in the GPU and its associated memory.  To this 
end, we use the frame buffer like a register array to hold 
transient state, and we use textures like main memory arrays 

for state storage.  Since the frame buffer and textures are 
typically limited to storage of 8-bit unsigned integers, state 
values must be converted to this format before being written 
to texture.   

Texture storage can be used for both scalar and vector 
data.  Because of the four color channels used in image 
generation,  two-, three-, or four-dimensional vectors can be 
stored in each texel of an RGBA texture.  If scalar data are 
needed, it is often advantageous to store more than one scalar 
state in a single texture by using different color channels. In 
our CML implementation of the Gray-Scott reaction-
diffusion system, for example, we store the concentrations of 
both reactants in the same texture.  This is not only efficient 
in storage but also in computation since operations that act 
equivalently on both concentrations can be performed in 
parallel.  

Physical simulation also requires the use of signed values.  
Most texture storage, however, uses unsigned fixed-point 
values.  Although fragment-level programmability available 
in current GPUs uses signed arithmetic internally, the 
unsigned data stored in the textures must be biased and 
scaled before and after processing [NVIDIA 2002]. 

3.5 Implementing CML Operations 
An iteration of a CML simulation consists of successive 
application of simple operations on the lattice.  These 
operations consist of three steps: setup the graphics hardware 
rendering state, render a single quadrilateral fit to the view 
port, and store the rendered results into a texture. We refer to 
each of these setup-render-copy operations as a single pass.  
In practice, due to limited GPU resources (number of texture 
units, number of register combiners, etc.), a CML operation 
may span multiple passes.   

The setup portion of a pass simply sets the state of the 
hardware to correctly perform the rest of the pass.  To be 
sure that the correct lattice nodes are sampled during the 
pass, texels in the input textures must map directly to pixels 
in the output of the graphics pipeline.  To ensure that this is 
true, we set the view port to the resolution of the lattice, and 
the view frustum to an orthographic view fit to the lattice so 
that there is a one-to-one mapping between pixels in the 
rendering buffer and texels in the texture to be updated. 

The render-copy portion of each pass performs 4 
suboperations: Neighbor Sampling, Computation on 
Neighbors, New State Computation, and State Update.  
Figure 3 illustrates the mapping of the suboperations to 
graphics hardware.  Neighbor sampling and Computation on 
Neighbors are performed by the programmable texture 
mapping hardware.  New State Computation performs 
arithmetic on the results of the previous suboperations using 
programmable texture blending.  Finally, State Update feeds 
the results of one pass to the next by rendering or copying 
the texture blending results to a texture.  

Neighbor Sampling: Since state is stored in textures, 
neighbor sampling is performed by offsetting texture 
coordinates toward the neighbors of the texel being updated.  

Figure 3: Components of a CML operation map to 
graphics hardware pipeline components. 
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For example, to sample the four nearest neighbor nodes of 
node (x,y), the texture coordinates at the corners of the 
quadrilateral mentioned above are offset in the direction of 
each neighbor by the width of a single texel. Texture 
coordinate interpolation ensures that as rasterization 
proceeds, every texel’s neighbors will be correctly sampled.  
Note that beyond sampling just the nearest neighbors of a 
node, weighted averages of nearby nodes can be computed 
by exploiting the linear texture interpolation hardware 
available in GPUs.  An example of this is our single-pass 
implementation of 2D diffusion, described in Appendix A.  

Care must be taken, though, since the precision used for 
the interpolation coefficients is sometimes lower than the rest 
of the texture pipeline. 

Computation on Neighbors: As described in Section 
3.3.3, many simulations compute complex functions of the 
neighbors they sample.  In many cases, these functions can 
be computed ahead of time and stored in a texture for use as 
a lookup table.  The programmable texture shader 
functionality of recent GPUs provides several dependent 
texture addressing operations.  We have implemented table 
lookups using the “DEPENDENT_GB_TEXTURE_ 
2D_NV” texture shader of the GeForce 3.  This shader 
provides memory indirect texture addressing – the green and 
blue colors read from one texture unit are used as texture 
coordinates for a lookup into a second texture unit.  By 
binding the precomputed lookup table texture to the second 
texture unit, we can implement arbitrary function operations 
on the values of the nodes (Figure 4).   

New State Computation: Once we have sampled the 
values of neighboring texels and optionally used them for 
function table lookups, we need to compute the new state of 
the lattice.  We use programmable hardware texture blending 
to perform arithmetic operations including addition, 
multiplication, and dot products.  On the GeForce 3 and 4, 
we implement this using register combiners [NVIDIA 2002]  
Register combiners take the output of texture shaders and 
rasterization as input, and provide arithmetic operations, 
user-defined constants, and temporary registers.  The result 
of these computations is written to the frame buffer. 

State Update: Once the new state is computed, we must 
store it in a state texture.  In our current implementation, we 
copy the newly-rendered frame buffer to a texture using the 
glCopyTexSubImage2D() instruction in OpenGL.  Since all 
simulation state is stored in textures, our technique avoids 
large data transfers between the CPU and GPU during 

simulation and rendering. 

3.6 Numerical Range of CML Simulations 
The physically based nature of CML simulations means that 
the ranges of state values for different simulations can vary 
widely.  The graphics hardware we use to implement them, 
on the other hand, operates only on fixed-point fragment 
values in the range [0,1].  This means that we must 
normalize the range of a simulation into [0,1] before it can be 
implemented in graphics hardware. 

Because the hardware uses limited-precision fixed-point 
numbers, some simulations will be more robust to this 
normalization than others.  The robustness of a simulation 
depends on several factors.  Dynamic range is the ratio 
between a simulation's largest absolute value and its smallest 
non-zero absolute value.  If a simulation has a high dynamic 
range, it may not be robust to normalization unless the 
precision of computation is high enough to represent the 
dynamic range.  We refer to a simulation's resolution as the 
smallest absolute numerical difference that it must be able to 
discern.  A simulation with a resolution finer than the 
resolution of the numbers used in its computation will not be 
robust.  Finally, as the arithmetic complexity of a simulation 
increases, it will incur more roundoff error, which may 
reduce its robustness when using low-precision arithmetic. 

For example, the boiling simulation (Section 4.1) has a 
range of approximately [0,10], but its values do not get very 
close to zero, so its dynamic range is less than ten.  Also, its 
resolution is fairly coarse, since the event to which it is most 
sensitive – phase change – is near the top of its range.  For 
these reasons, boiling is fairly robust under normalization.  
Reaction-diffusion has a range of [0,1] so it does not require 
normalization.  Its dynamic range, however, is on the order 
of 105, which is much higher than that of the 8-bit numbers 
stored in textures.  Fortunately, by scaling the coefficients of 
reaction-diffusion, we can reduce this dynamic range 
somewhat to get interesting results.  However, as we 
describe in Section 4.3, it suffers from precision errors (See 
Section 5.1 for more discussion of precision issues).  As 
more precision becomes available in graphics hardware, 
normalization will become less of an issue.  When floating 
point computation is made available, simulations can be run 
within their natural ranges. 

4  Results 
We have designed and built an interactive framework, 
“CMLlab”, for constructing and experimenting with CML 
simulations (Figure 5).  The user constructs a simulation 
from a set of general purpose operations, such as diffusion 
and advection, or special purpose operations designed for 
specific simulations, such as the buoyancy operations 
described in Section 3.3.  Each operation processes a set of 
input textures and produces a single output texture.  The user 
connects the outputs and inputs of the selected operations 
into a directed acyclic graph.  An iteration of the simulation 
consists of traversing the graph in depth-first fashion so that 
each operation is performed in order.  The state textures 
resulting from an iteration are used as input state for the next 

Figure 4: Arbitrary function lookups are implemented
using dependent texturing in graphics hardware. 
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iteration, and for displaying the simulated system.  The 
results of intermediate passes in a simulation iteration can be 
displayed to the user in place of the result textures.  This is 
useful for visually debugging the operation of a new 
simulation. 

While 2D simulations in our framework use only 2D 
textures for storage of lattice state, 3D simulations can be 
implemented in two ways.  The obvious way is to use 3D 
textures.  However, the poor performance of copying to 3D 
textures in current driver implementations would make our 
simulations run much slower. Instead, we implement 3D 
simulations using a collection of 2D slices to represent the 
3D volume.  This has disadvantages over using true 3D 
textures.  For example, we must implement linear filtering 
and texture boundary conditions (clamp or repeat) in 
software, wheras 3D texture functionality provides these in 
hardware.   

It is worth noting that we trade optimal performance for 
flexibility in the CMLLab framework.  Because we want to 
allow a variety of models to be built from a set of operations, 
we often incur the expense of some extra texture copies in 
order to keep operations separate.  Thus, our implementation 
is not optimal – even faster rates are achievable on the same 
hardware by sacrificing operator reuse. 

To demonstrate the utility of hardware CML simulation 
in interactive 3D graphics applications, we have integrated 
the simulation system into a virtual environment built on a 
3D game engine, “Wild Magic” [Eberly 2001].  Figure 7 (see 
color plate) is an image of a boiling witch’s brew captured 
from a real-time demo we built with the engine.  The demo 
uses our 3D boiling simulation (Section 4.1) and runs at 45 
frames per second.  

We will now describe three of the CML simulations that 
we have implemented.  The test computer we used is a PC 
with a single 2.0 GHz Pentium 4 processor and 512 MB of 
RAM.  Tests were performed on this machine with both an 
NVIDIA GeForce 3 Ti 500 GPU with 64 MB of RAM, and 
an NVIDIA GeForce 4 Ti 4600 GPU with 128 MB of RAM. 

4.1 Boiling 
We have implemented 2D and 3D boiling simulations as 
described in [Yanagita 1992].  Rather than simulate all 
components of the boiling phenomenon (temperature, 
pressure, velocity, phase of matter, etc.), their model 
simulates only the temperature of the liquid as it boils.  The 
simulation is composed of successive application of thermal 
diffusion, bubble formation and buoyancy, latent heat 
transfer.  Sections 3.3.1 and 3.3.3 described the first two of 
these, and Section 2.1 gave an overview of the model.  For 
details of the latent heat transfer computation, we refer the 
reader to [Yanagita 1992].  Our implementation requires 
seven passes per iteration for the 2D simulation, and 9 passes 
per slice for the 3D simulation.  Table 1 shows the 
simulation speed for a range of resolutions.  For details of 
our boiling simulation implementation, see [Harris 2002b].  

4.2 Convection 
The Rayleigh-Bénard convection CML model of [Yanagita 
and Kaneko 1993] simulates convection using four CML 
operations: buoyancy (described in 3.3.2), thermal diffusion, 
temperature and velocity advection, and viscosity and 
pressure effect.  The viscosity and pressure effect is 
implemented as 

2 grad(div )
4

v
p

k
v v v k v′ = + ∇ + , 

where v is the velocity, kv is the viscosity ratio and kp is the 
coefficient of the pressure effect.  The first two terms of this 
equation account for diffusion of the velocity, and the last 
term is the flow caused by the gradient of the mass flow 
around the lattice [Miyazaki, et al. 2001].  See [Miyazaki, et al. 
2001;Yanagita and Kaneko 1993] for details of the discrete 
implementation of this operation. 

The remaining operation is advection of temperature and 
velocity by the velocity field.  [Yanagita and Kaneko 1993] 
implements this by distributing state from a node to its 
neighbors according to the velocity at the node. In our 
implementation, this was made difficult by the precision 

 Iterations Per Second  

Resolution Software GeForce 3 GeForce 4 Speedup 

64x64 266.5 1252.9  1752.5 4.7 / 6.6

128x128 61.8 679.0  926.6 11.0 / 15.0

256x256 13.9 221.3 286.6 15.9 / 20.6

512x512 3.3 61.2 82.3 18.5 / 24.9

1024x1024 .9 15.5 21.6 17.2 / 24

32x32x32 25.5 104.3 145.8 4.1 / 5.7

64x64x64 3.2 37.2 61.8 11.6 / 19.3

128x128x128 .4 NA 8.3 NA / 20.8

Table 1: A speed comparison of our hardware CML
boiling simulation to a software version.  The speedup
column gives the speedup for both GeForce 3 and 4.

Figure 5: CMLlab, our interactive framework for building
and experimenting with CML simulations. 
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limitations of the hardware, so we used a texture shader-
based advection operation instead.  This operation advects 
state stored in a texture using the GL_OFFSET_TEXTURE_ 
2D_NV dependent texture addressing mode of the GeForce 3 
and 4.  A description of this method can be found in 
[Weiskopf, et al. 2001].  Our 2D convection implementation 
(Figure 8 in the color plate section) requires 10 passes per 
iteration.  We have not implemented a 3D convection 
simulation because GeForce 3 and 4 do not have a 3D 
equivalent of the offset texture operation. 

Due to the precision limitations of the graphics hardware, 
our implementation of convection did not behave exactly as 
described by [Yanagita and Kaneko 1993].  We do observe the 
formation of convective rolls, but the motion of both the 
temperature and velocity fields is quite turbulent.  We 
believe that this is a result of low-precision arithmetic.   

4.3 Reaction-Diffusion 
Reaction-Diffusion processes were proposed by [Turing 
1952] and introduced to computer graphics by [Turk 
1991;Witkin and Kass 1991]. They are a well-studied model 
for the interaction of chemical reactants, and are interesting 
due to their complex and often chaotic behavior.  The 
patterns that emerge are reminiscent of patterns occurring in 
nature [Lee, et al. 1993]. We implemented the Gray-Scott 
model, as described in [Pearson 1993]. This is a two-chemical 
system defined by the initial value partial differential 
equations: 
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where F, k, Du, and Dv. are parameters given in [Pearson 
1993]. We have implemented 2D and 3D versions of this 
process, as shown in Figure 5 (2D), and Figures 1 and 9 (3D, 
on color plate).  We found reaction-diffusion relatively 
simple to implement in our framework because we were able 
to reuse our existing diffusion operator.  In 2D this 

simulation requires two passes per iteration, and in 3D it 
requires three passes per slice.  A 256x256 lattice runs at 400 
iterations per second in our interactive framework, and a 
128x128x32 lattice runs at 60 iterations per second. 

The low precision of the GeForce 3 and 4 reduces the 
variety of patterns that our implementation of the Gray-Scott 
model produces.  We have seen a variety of results, but much 
less diversity than produced by a floating point 
implementation.  As with convection, this appears to be 
caused by the effects of low-precision arithmetic. 

5  Hardware Limitations 
While current GPUs make a good platform for CML 
simulation, they are not without problems.  Some of these 
problems are performance problems of the current 
implementation, and may not be issues in the near future.  
NVIDIA has shown in the past that slow performance can 
often be alleviated via optimization of the software drivers 
that accompany the GPU.  Other limitations are more 
fundamental. 

Most of the implementation limitations that we 
encountered were limitations that affected performance.  We 
have found glCopyTexSubImage3D(), which copies the 
frame buffer to a slice of a 3D texture, to be much slower (up 
to three orders of magnitude) than glCopyTexSubImage2D() 
for the same amount of data.  This prevented us from using 
3D textures in our implementation.  Once this problem is 
alleviated, we expect a 3D texture implementation to be 
faster and easier to implement, since it will remove the need 
to bind multiple textures to sample neighbors in the third 
dimension.  Also, 3D textures provide hardware linear 
interpolation and boundary conditions (periodic or fixed) in 
all three dimensions.  With our slice-based implementation, 
we must interpolate and handle boundary conditions in the 
third dimension in software. 

The ability to render to texture will also provide a speed 
improvement, as we estimate that in a complex 3D 
simulation, much of the processing time is spent copying 
rendered data from the frame buffer to textures (typically one 
copy per pass).  When using 3D textures, we will need the 
ability to render to a slice of a 3D texture. 

5.1 Precision 
The hardware limitation that causes the most problems to 

our implementation is precision.  The register combiners in 
the GeForce 3 and 4 perform arithmetic using nine-bit signed 
fixed-point values.  Without floating point, the programmer 
must scale and bias values to maintain them in ranges that 
maximize precision.  This is not only difficult, it is subject to 
arithmetic error. Some simulations (such as boiling) handle 
this error well, and behave as predicted by a floating point 
implementation.  Others, such as our reaction-diffusion 
implementation, are more sensitive to precision errors. 

We have done some analysis of the error introduced by 
low precision and experiments to determine how much 
precision is needed (For full details, see [Harris 2002a]).  We 
hypothesize that the diffusion operation is very susceptible to 

Figure 6: High-precision fragment computations in near
future graphics hardware will enable accurate simulation of
reaction-diffusion at hundreds of iterations per second. 
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roundoff error, because in our experiments in CMLlab, 
iterated application of a diffusion operator never fully 
diffuses its input.  We derive the error induced by each 
application of diffusion (in 2D) to a node (i,j) as 

,

3
(3 )

4d i j

d
xε ε≈ + + , 

where d is the diffusion coefficient, xi,j is the value at node (i, 
j), and ε is the amount of roundoff error in each arithmetic 
operation.  Since d and xi,j are in the range [0,1], this error is 
bounded above by 4.75dε ε≤ .  With 8 bits of precision, ε is 
at most 2-9.  This error is fairly large, meaning that a 
simulation that is sensitive to small numbers will quickly 
diverge. 

In an attempt to better understand the precision needs of 
our more sensitive simulations, we implemented a software 
version of our reaction-diffusion simulation with adjustable 
fixed-point precision.  Through experimentation, we have 
found that with 14 or more bits of fixed-point precision, the 
behavior of this simulation is visually very similar to our 
single-precision floating-point implementation.  Like the 
floating-point version, a diverse variety of patterns grow, 
evolve, and sometimes develop unstable formations that 
never cease to change.  Figure 6 shows a variety of patterns 
generated with this 14-bit fixed-point simulation. 

Graphics hardware manufacturers are quickly moving 
toward higher-quality pixels.  This goal, along with 
increasing programmability, makes high-precision 
computation essential.  Higher precision, including floating-
point fragment values, will become a standard feature of 
GPUs in the near future [Spitzer 2002].  With the increasing 
precision and programmability of GPUs, we believe that 
CML methods for simulating natural phenomena using 
graphics hardware will become very useful. 

6  Conclusions and Future Work 
In this paper, we have described a method for simulating a 
variety of dynamic phenomena using graphics hardware.  We 
presented the coupled map lattice as a simple and flexible 
simulation technique, and showed how CML operations map 
to computer graphics hardware operations.  We have 
described common CML operations and how they can be 
implemented on programmable GPUs. 

Our hardware CML implementation shows a substantial 
speed increase (up to 25 times on a GeForce 4) over the same 
simulations implemented to run on a Pentium 4 CPU.  
However, this comparison (and the speedup numbers in 
Table 1) should be taken with a grain of salt.  While our 
CPU-based CML simulator is an efficient, straightforward 
implementation that obeys common cache coherence 
principles, it is not highly optimized, and could be 
accelerated by using vectorized CPU instructions.  Our 
graphics hardware implementation is not highly optimized 
either.  We sacrifice optimal speed for flexibility.  The CPU 
version is also written to use single precision floats, while 
the GPU version uses fixed-point numbers with much less 

precision.  Nevertheless, we feel that it would be difficult, if 
not impossible, to achieve a 25x speedup over our current 
CPU implementation by optimizing the code and using lower 
precision numbers.  A more careful comparison and 
optimized simulations on both platforms would be useful in 
the future. 

“CMLlab”, our flexible framework for building CML 
models, allows a user to experiment with simulations 
running on graphics processors.  We have described various 
2D and 3D simulations that we have implemented in this 
framework.  We have also integrated our CML framework 
with a 3D game engine to demonstrate the use of 3D CML 
models in interactive scenes and virtual environments.  In the 
future, we would like to add more flexibility to CMLlab.  
Users currently cannot define new, custom operations 
without writing C++ code.  It would be possible, however, to 
provide generic, scriptable operators, since the user 
microcode that runs on the GPU can be dynamically loaded. 

We have described the problems we encountered in 
implementing CML in graphics hardware, such as limited 
precision and 3D texturing performance problems.  We 
believe that these problems will be alleviated in near future 
generations of graphics hardware.  With the continued 
addition of more texture units, memory, precision, and more 
flexible programmability, graphics hardware will become an 
even more powerful platform for visual simulation.  Some 
relatively simple extensions to current graphics hardware and 
APIs would benefit CML and PDE simulation.  For example, 
the ability to render to 3D textures could simplify and 
accelerate each pass of our simulations.  One avenue for 
future research is to increase parallelization of simulations on 
graphics hardware.  Currently, it is difficult to add multiple 
GPUs to a single computer because PCs have a single AGP 
port.  If future PC hardware adds support for multiple GPUs, 
powerful multiprocessor machines could be built with these 
inexpensive processors. 

We plan to continue exploring the use of CML on current 
and future generations of graphics hardware.  We are 
interested in porting our system to ATI Radeon hardware.  
The Radeon 8500 can sample more textures per pass and has 
more programmable texture addressing than GeForce 3, 
which could add power to CML simulations.  Also, our 
current framework relies mostly on the power of the 
fragment processing pipeline, and uses none of the power 
available in the programmable vertex engine.  We could 
greatly increase the complexity of simulations by taking 
advantage of this.  Currently, this would incur additional cost 
for feedback of the output of the fragment pipeline (through 
the main memory) and back into the vertex pipeline, but 
depending on the application, it may be worth the expense.  
GPU manufacturers could improve the performance of this 
feedback by allowing textures in memory to be interpreted as 
vertex meshes for processing by the vertex engine, thus 
avoiding unneccessary transfers back to the host. 

We hope to implement the cloud simulation described by 
[Miyazaki, et al. 2001] in the near future, as well as other 
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dynamic phenomena.  Also, since the boiling simulation of 
[Yanagita 1992] models only temperature, and disregards 
surface tension, the bubbles are not round.  We are interested 
in extending this simulation to improve its realism.  We plan 
to continue exploring the use of computer graphics hardware 
for general computation.  As an example, the anisotropic 
diffusion that can be performed on a GPU may be useful for 
image-processing and computer vision applications. 
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A Implementation of Diffusion 
On GeForce 3 hardware, the diffusion operation can be 
implemented more efficiently than the Laplacian operator 
itself.  To do so, we rewrite Equation (1) as  
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where nk(x,y) represents the kth nearest neighbor of (x, y).  In 
this form, we see that the diffusion operator is the average of 
four weighted sums of the center texel, Ti,j and its four 
nearest neighbor texels.  These weighted sums are actually 
linear interpolation computations, with cd as the parameter of 
interpolation.  This means that we can implement the 
diffusion operation described by Equation 3 by enabling 
linear texture filtering, and using texture coordinate offsets 
of cd ÿ w, where w is the width of a texel as described in 
Section 3.5. 
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Figure 7: A CML boiling simulation running in an
interactive 3D environment (the steam is a particle
system). 

Figure 9: A sequence from our 3D version of the Gray-Scott reaction-diffusion model. 

Figure 8: A CML convection simulation.  The left panel
shows temperature; the right panel shows 2D velocity
encoded in the blue and green color channels. 


