

Stylized Rendering Techniques For Scalable Real-Time 3D Animation

Adam Lake Carl Marshall Mark Harris† Marc Blackstein
Graphics Algorithms and 3D Technologies Group (G3D)

Intel Architecture Labs (IAL)
†University of North Carolina at Chapel Hill

“We’re searching here, trying to get away from the cut and dried
handling of things all the way through—everything—and the only
way to do it is to leave things open until we have completely
explored every bit of it.”

–Walt Disney
Abstract
Researchers in nonphotorealistic rendering (NPR) have
investigated a variety of techniques to simulate the styles of
artists. Recent work has resulted in methods for pen-and-ink
illustration, pencil sketching, watercolor, engraving, and
silhouette edge rendering. This paper presents real-time methods
to emulate cartoon styles. We also present variations on a texture
mapping technique to achieve real-time pencil sketching. We
demonstrate our method of inking silhouettes, material and mesh
boundaries, and crease edges. In addition, we present techniques
for emphasizing motion of cartoon objects by introducing
geometry into the cartoon scene. The rendering system is
integrated with an animation system and a runtime multi-
resolution mesh (MRM) system to achieve scalability, ensuring
real-time performance on any platform. Such solutions allow us
to take advantage of evolving hardware in order to make
nonphotorealistic animation and rendering achievable on low- and
high-end consumer platforms. All of the techniques described can
be applied to models created with standard modeling tools and
require no additional mark-up information from the modeler.

CR Categories and Subject Descriptors: I.3.3 [Computer Graphics]:
Picture/Image Generation; I.3.5 [Computer Graphics]: Three-Dimensional
Graphics and Realism – Color, Shading, Shadowing, and Texture.

Additional Key Words: real-time nonphotorealistic animation and
rendering, silhouette edge detection, cartoon rendering, pencil sketch
rendering, stylized rendering, cartoon effects.

1 Introduction
Recent advances in consumer-level graphics card performance are
making a new domain of real-time 3D applications available for
commodity platforms. Since the processor is no longer required
to spend time rasterizing polygons, it can be utilized for other
effects, such as the computation of subdivision surfaces, real-time
physics, cloth modeling, realistic animation and inverse
kinematics.

{adam.t.lake, carl.s.marshall, marc.s.blackstein}@intel.com
† harrism@cs.unc.edu

Another use of the graphics processor and CPU is to create a
stylistic look for the rendered imagery. In this paper we will
introduce our painting and inking system, a nonphotorealistic
rendering system that runs in real time on today’s PC platforms.
In addition, it is integrated with a multi-resolution mesh system
that can be used to achieve guaranteed frame rates and optimal
use of processing resources in a system that scales both to new
hardware and to models of increasing complexity. Because of the
rapidly increasing demand for greater visual fidelity, it is critical
to integrate such solutions into any real-time graphics system that
needs to run across machines with varying levels of performance.
Uses: Nonphotorealistic rendering is capable of broadening our
ability to communicate thoughts, emotions, and feelings through
computers. Artists have learned that by making images look less
photorealistic they enable audiences to feel more immersed in a
story [McCl93]. Our primary interest is to enable the use of real-
time stylized rendering to create a more compelling storytelling
experience, whether that be through dynamic images in an on-line
book, interactive technical illustrations, or immersive cartoon
experiences. Another use is the rapid prototyping of cartoon
animations, coloring, and shot angles before allocating valuable
artistic talent for painting and inking cels in an animation
environment.
Results: In this paper we introduce new real-time algorithms for
cartoon shading, pencil sketching, and silhouette edge detection
and rendering. We also present a new technique for generating
motion lines to emphasize motion in 3D cartoon renderings. It is
important to note that the system does not require any additional
mark-up information from the author. These shading techniques

Figure 1: An example of a pencil sketch style rendering.
Inset: the same model rendered in the cartoon style.

Supplemental Materials
Supplemental materials are included on the NPAR 2000 CD.

require only per-vertex positions, normals, material properties,
texture coordinates, and connectivity information. We integrate
these new rendering techniques with a character animation system
and a multi-resolution mesh to provide scalability.
Organization: Our real-time rendering architecture is composed
of two core components. Section 2 discusses previous work on
these components. The Painter, which is used for determining
shading information to ‘fill’ the polygons, is discussed in Section
3. Section 4 presents the Inker, highlights our silhouette edge
detection methods and gives details on a curvature-driven
approach for rendering silhouette edges that has yielded pleasing
results. Section 5 presents a method for creating an effect used by
animators to indicate real-world characteristics like object motion.
Finally, we conclude with a discussion of the performance
characteristics and avenues for future work in real-time stylized
rendering techniques. We use stylistic rendering and
nonphotorealistic rendering interchangeably. A video
accompanies the paper that demonstrates our methods.

2 Previous Work
First, we discuss previous work on real-time and non real-time
shading methods. We then discuss previous work on silhouette
edge detection and rendering.

2.1 Previous Work In Stylistic Rendering
Recent years have seen strong interest in real-time NPR methods.
Our variation of the standard rendering equations to achieve
cartoon shading is similar to a variation presented in [Gooc98]
that creates a warm-to-cool transition for technical illustration.
[Rade99] achieves a variety of NPR effects by varying the Gooch
warm-to-cool shading method with each surface. Our cartoon
shading uses a similar modification to the lighting equations, but
also utilizes hardware accelerated texture mapping to simulate the
limited color palette cartoonists use for painting cels. [Deca96]
uses a combination of multi-pass rendering and image processing
techniques to create cartoon-style images. Decaudin's
thresholding of surface color via the value of n⋅l is similar to our
approach. Example applications that use NPR for rendering free-
form design in a modeling system are [Igar99] and [Zele96].
Since their focus is on user interface design and not real-time
animation, they do not include multi-resolution mesh capability or
animation support. [Digi97], [Ment99], and [Ligh99], are
commercial ray-tracing packages that support stylized rendering.
Each supports cartoon shading but does so via ray tracing and
does not take advantage of fast texture mapping hardware.
[View98] implements several styles for rendering, and [Meta99]
allows animated models to be rendered in a cartoon style. Our
system renders animated models in multiple styles and is
integrated with a multi-resolution mesh system that improves
scalability.

2.2 Previous Work In Silhouette Edge Detection (SED)
SED is a technique that has been used in NPR and technical
illustration for many years. [Mark97] provides a real-time
rendering SED implementation that is built upon Appel’s hidden-
line algorithm [Appe67]. Markosian's algorithm uses a technique
to find silhouettes that deliberately sacrifices accuracy for speed,
but is limited by the fact that it does not take advantage of current
PC graphics hardware to resolve visibility using the z-buffer.
Raskar et al demonstrate several image-space metrics to find the
silhouette edges of polyhedral models while trying to maintain a
specified pixel thickness of the lines used to render the silhouettes

[Rask99]. On current generation systems this method is not
suitable due to slow frame buffer reads.

[Gooc99] demonstrates several ways to find the silhouettes
of a model. In that work, three methods are presented: use of a
Gauss map, use of glPolygonOffset with a scale factor, and
a straightforward method of testing every edge. The Gauss map
introduces inconsistent line thickness of silhouettes but creates
interesting effects. glPolygonOffset moves a polygon a
small distance toward the eye to force coincident z-values apart
[Woo99], and requires rendering the model twice, a potentially
significant performance cost on consumer hardware. Our method
provides a fast and accurate system to find the important edges of
a mesh while maintaining frame-to-frame coherence. We use a
straightforward technique for SED, in which each edge of a model
is checked to determine if it is one of the important edges.

3 Stylistic Shading
We call our shader the Painter due to its similarity to the cel
animator’s process of painting an already inked cell. A content
author can set the rendering style based on the look and feel she is
trying to achieve via the rendering API. By varying the shadow
and highlight parameters, the number and styles of textures used,
and the weighting factors for our shading calculations, we are able
to produce a variety of styles.

3.1 Cartoon Shading
Cartoon characters are intentionally “two-dimensional”.
Animators deliberately reduce the amount of visual detail in their
drawings in order to draw the audience into the story and to add
humor and emotional appeal. [McCl93] demonstrates that
reducing detail in the features of a character – usually facial –
allows a wider audience to easily relate to the character. Rather
than shading the character to give it a three-dimensional
appearance, the cartoonist typically uses solid colors that do not
vary across the materials they represent. Often the artist will shade
the part of a material that is in shadow with a color that is a
darkened version of the main material color. This helps add
lighting cues, cues to the shape and context of the character in a
scene, and even dramatic cues. The boundary between shadowed
and illuminated colors is a hard edge that follows the contours of
the object or character. We refer to this technique as hard
shading, and examples are shown in Figures 3, 16, 17, and 18.

Our system allows a 3D model to be drawn to look just like a
traditional 2D cartoon, and to be viewed interactively. The
technique relies on texture mapping and the mathematics of
traditional diffuse lighting.

Rather than smoothly interpolating shading across a model as
in Gouraud shading [Gour71], our hard shading technique finds a
transition boundary and shades each side of the boundary with a
solid color. The lighting equation used to calculate the diffuse
lighting at the vertices for both smooth shading and our cartoon
shading is shown in Equation 1.

Here, Ci is the vertex color, ag is the coefficient of global
ambient light, al and dl are the ambient and diffuse coefficients of
the light source, and am and dm are the ambient and diffuse
coefficients of the object’s material. L is the unit vector from the
light source to the vertex, and n is the unit vector normal to the

Equation 1.
mlmlmgi ddnLMaxaaaaC ××⋅+×+×= })0,{(

surface at the vertex. nL ⋅ results in the cosine of the angle
formed between the two vectors.

The math for our cartoon shading technique is essentially the
same. Instead of calculating the colors per vertex, however, we
create a texture map of a minimal number of colors (in most cases
only two – one for the illuminated color and one for the shadowed
color). The main color of the texture map is calculated by
replacing the dot product term from equation 1 with a value of one
(which is equivalent to an angle of zero degrees, and normally
happens when the light is directed right at the vertex). The
shadow color of the texture map is calculated by replacing the dot
product term in Equation 1 with a value of zero (so that it is made
up of only ambient illumination). The resulting texture is a one-
dimensional texture map, and in the simplest case, it has only two
texels – one for each color. This texture is computed once per
material and stored ahead of time.

The boundary between lit and shadowed colors on the model
depends, just as the color calculated in smooth shading, on the
cosine of the angle between the light and normal vectors. At each
frame, we calculate }0,{ nLMax ⋅ for each vertex, and use these
per-vertex values as texture coordinates for the precomputed one-
dimensional texture map.

Figure 2 demonstrates how the light position and normal
direction are used to index into the one-dimensional texture map.
Note that as }0,{ nLMax ⋅ crosses 0.5, the index into the texture
map chooses a different color. The transition between the
illuminated and shadowed regions may appear jagged if viewed
closely. 3D graphics APIs provide texture-filtering modes that
can be helpful in this case, depending on the model and the
viewing conditions. One mode chooses the nearest texel to a pixel
(“nearest”), while another interpolates among a set of texels
nearest to the pixel (“linear”). We find that using the nearest filter
mode results in acceptable results, but a jagged color transition

can be smoothed using the linear filter. This mode smoothes the
color boundary, but the smooth transition may be too wide if the
polygons on which the transitions occur are too large in screen
space. The preprocess and runtime portions of our cartoon
shading algorithm follow.

ALGORITHM Cartoon Shade
Preprocess:
1. Calculate the illuminated diffuse color for each material:

mlmlmgi ddaaaaC ×+×+×= .

2. Calculate the shadowed diffuse color:
mlmgs aaaaC ×+×=

3. For each material, create and store a one-dimensional texture map
with two texels using the texture functionality provided by a
standard 3D graphics API. Color the texel at the u=1 end of the
texture with Ci and the texel at the u=0 end of the texture with Cs.

Runtime:
1. Calculate the one-dimensional texture coordinate at each vertex of

the model using }0,{ nLMax ⋅ , where L is the normalized vector
from the vertex to the light source location, n is the unit normal to
the surface at the vertex, and nL ⋅⋅⋅⋅ is their vector inner (dot) product.

2. Render the model using a standard graphics API with lighting
disabled and one-dimensional texture maps enabled.

Notice that we must do a dot product at each vertex for every
frame. While current processors are fast enough to handle this
math at interactive rates on scenes with reasonable complexity,
hardware lighting could potentially be used to speed these
computations. Since 3D graphics accelerators with hardware
lighting compute nL ⋅ per vertex anyway, a hardware pathway
between the lighting and texturing subsystems and an associated
automatic texture-coordinate generation mode would be beneficial
for cartoon shading. A variety of shading techniques, both
photorealistic and nonphotorealistic, could also benefit from such
hardware features [Heid99]. Our texture-mapped method is
equivalent to per-pixel color thresholding. Without texture
mapping we would need either hardware-supported per-pixel
procedural shading or a thresholded variation of hardware
Gouraud shading to achieve the same fast results.

3.2 Variations On Cartoon Shading
The cartoon shading technique described in section 3.1 can be
used to render in a variety of different styles. The choice of colors
alone has a strong effect on the appearance or style of the cartoon.
The Painter provides the user with the ability to override the
automatic computation of texture colors so that she may assign
custom colors. By using higher-resolution texture maps,
additional effects can be created. In the case of a two-color
texture, using a higher-resolution texture can provide flexibility in
the location of the shadow boundary. If an eight-texel texture is
used, for example, with seven of the eight texels set to the shadow
color and one to the illuminated color, most of the character will
appear in shadow, with small portions illuminated. A dark comic
book feel can be achieved in this way by setting the shadow color
to black or to the background color, and the illuminated color to
something much brighter. An example of this, in the spirit of a
style demonstrated in [Hoga81], is shown in Figure 16. A look
similar to double-source lighting, also discussed by Hogarth, can
be created in a similar manner by setting the colors at both ends of
a texture map to an illuminated color, and the colors in the middle
of the texture to a shadowed color.

Another effect that we have implemented is a shadow-and-
highlight style. This is similar to standard hard shading, but uses

0 0.25 0.5 0.75 1

Texture

Figure 2: Generation of
texture coordinates from nL ⋅ .
In this case, the shadow
boundary occurs at the point
where nL ⋅ equals 0.5.

n L

Surface

Figure 3: Olaf rendered using cartoon shading.

three colors instead of just two when building the one-
dimensional texture. We use a higher resolution texture with
eight or sixteen texels in which half of the texels are set to the
shadow color. At the illuminated end of the texture, one or two of
the texels are set to a highlight color, while the rest of the texels
are set to the illuminated material color. The highlight color can
be chosen automatically by multiplying the material color by a
highlight factor. Shadow-and-highlight shading is shown in
figures 16 and 17. These highlights are view-independent,
“diffuse” highlights. To render a specular cartoon highlight, we
add a second texture using multitexturing that is blended with the
first texture and whose texture coordinates come from a view-
dependent specular computation rather than the diffuse
computation shown above. Multiple simultaneous textures can
be rendered quickly with current multitexturing PC hardware.
Multitexturing is the capability provided in most new graphics
hardware to map two or more textures onto a polygon in a single
rendering pass.

The Painter also allows the use of color gradient textures.
The user simply specifies the texture resolution and the starting
and ending colors of the texture, and the Painter calculates a
gradient to fill the texture. This technique can be used as an
alternative to the Phong shading provided by the graphics API, by
using a high resolution gradient texture (128 or 256 texels with
linear interpolation) with the shadowed color at one end and the
illuminated color at the other. In fact, the texture-mapped shading
provides a spectrum of approximations to diffuse illumination,
with single-color flat shading (one texel value) at one end of the
spectrum, and smooth diffuse shading at the other. By providing
the user with just a few parameters, our Painter offers a large
variety of stylized and cartoon rendering effects.

3.3 Pencil Sketch Shading
In this technique, we extend the texture mapping method of the
cartoon shading algorithm to handle two-dimensional textures.
As with cartoon shading, we use the calculation of nL ⋅ per
vertex. Instead of selecting texels in a one-dimensional texture,
the algorithm uses nL ⋅ to select a texture of appropriate density.
The textures are created by randomly selecting from the pencil
strokes in Figure 6, and placing them on the texture with random
spacing to avoid coherence (Figure 7). Regions receiving less
light have a higher density of pencil strokes. In regions of highest
density (lowest light), we combine pencil strokes in the horizontal
and vertical directions. We use multitexturing to render the paper

texture onto the model to make it look sketched on paper. If the
model is scaled, the paper texture has to be scaled proportionately
to maintain coherence with the background paper texture. As in
the cartoon shader, the user may choose a non-linear mapping
between nL ⋅ values and the density of the chosen texture. For
example, nL ⋅ values from 0 to 0.5 might map to one texture
while values from 0.5 to 1 map uniformly to the remaining
textures. In the cartoon shader we were able to rely on the texture
mapping hardware and graphics API functionality to determine
the boundary between shadowed and illuminated regions. Here, a
subdivision algorithm is required to break any polygon that
requires more than one texture applied. We group the polygons
based on which texture needs to be applied and render all
polygons receiving the same texture at once to minimize API
overhead. The results of this technique can be seen in Figures 1,
4, and 20.

Since the nL ⋅ values calculated above are used to choose
textures rather than texels, we must generate the texture
coordinates. One method is to ‘project’ a texture onto the model
through the viewport and use normalized (x, y) device coordinates
as the (u, v) texture coordinates, as shown in Figure 5. This can
be done for each frame or once as a preprocessing step.

Figure 4: A pencil-sketch rendering of a 3D castle.

Figure 5: To generate texture coordinates, each texture is
projected from the viewport onto the model.

 Level 4 Level 3 Level 2 Level 1

Figure 7: Textures used for pencil sketch shader. As
polygons face away from the light source, lower level
textures are used.

Figure 6: The pencil strokes and paper texture
combined for the pencil sketch shader.

Paper Texture Five Pencil strokes

ALGORITHM Pencil Sketch
Preprocess:
1. Read in a set of pencil strokes. These are bitmap images as in Figure

6.
2. Construct a set of n two-dimensional textures by randomly selecting
3. pencil strokes and arranging them uniformly along the v direction

with u spacing inversely proportional to density. The highest-
density textures may combine orthogonal pencil strokes, and the
lowest-density textures may be blank. Select the starting v position
randomly to avoid coherence in the texture.

Runtime:
1. Draw the background using an orthographic projection of a large

quadrilateral texture mapped with the paper texture.
2. For each vertex, calculate nL ⋅ where L is the light vector and n is

the vertex normal and use this value to quantize into one of n bins.
The bin corresponds to the texture that will be associated with this
vertex. Back facing polygons are not submitted. For example, in a
system with three bins we would have the intervals [0,a], (a, b], and
(b, 1.0] where a and b are adjustable values with the restriction a<b
and 0<=a, b<=1.0.

3. Build n face lists from the set of polygons. For each polygon, if each
vertex belongs to the same bin then append the polygon to the
appropriate face list. Otherwise, subdivide the polygon using linear
interpolation (see the following paragraph for details).

4. If using runtime (u, v) determination, determine position on the
viewport and the associated texture coordinate for the vertex.

5. For each set of face lists, use multitexturing to render the polygons
using the appropriate pencil texture, from Figure 7, and paper
background, from Figure 6.

In the case where the vertices of a face belong to different

bins, we subdivide the face into discrete triangles. To accomplish
this, we linearly interpolate along each of the edges to find new,
temporary vertices whose nL ⋅ value is exactly the border
between two adjacent bins. For example, if v1 is in bin i and v2 is
in bin i + j, we create j interpolated vertices along the edge v1v2.
For each new vertex, there will exist a vertex on a different edge
that “splits” the same two bins. By connecting corresponding
vertices, we have divided the triangle into subregions, each
belonging to a different texture bin.

The viewport mapping technique preserves the hand-drawn
feel of the textures, and thus is well suited for capturing static
images. However, during animations, this mapping technique
causes a "shower door effect" in which the model appears to be
swimming through the texture [Meie96]. In such circumstances, it
may be desirable to fix the texture coordinates during
preprocessing, thereby trading a flat appearance for smooth
animation sequences.

4 Stylistic Inking
The Painter enables a variety of imaginative rendering styles. For
some artisitic styles, such as cartoon rendering, the shading
provided by the Painter is incomplete. Most cartoon drawings
accent the details and silhouettes of characters with ink lines. Our
Inker complements the Painter by detecting and rendering the
important edges of a polygonal model. These edges can be
rendered using traditional straight line segments or using texture-
based lines.

The primary technology in the Inker is silhouette edge
detection (SED). A silhouette is an edge shared by one front- and
one back-facing polygon. Artistically, the silhouette of an object
or character helps to define space that helps to separate the
character from the rest of a scene while also providing intensity,
weight, and emotion [Hoga81]. The Inker detects and draws the
silhouettes of a 3D model in real time. In addition to silhouettes,
we find edge lines that mark other key features of a model, such

as crease and border edges. A crease edge is detected when the
dihedral angle between two faces is greater than a given threshold.
Border edges are those that lie on the edge of a single polygon, or
that are shared by two polygons with different materials.

4.1 Silhouette Edge Detection
An edge is marked as a silhouette edge if a front-facing and a
back-facing polygon share the edge as in figure 8. We find
silhouettes in each frame by taking the dot products of the face
normals of the two faces adjacent to an edge with the viewing
vector (see Equation 2), and comparing the product of these two
dot products with zero. If the result of this computation is less
than or equal to zero, the edge is a silhouette edge and it is flagged
for rendering. The Inker detects and draws important edges using
the following algorithm. The result is shown in Figure 18.

ALGORITHM SED
Preprocess:
1. Allocate memory for an edge list including an edge flag for each

edge to indicate whether it is a border, crease, or silhouette edge.
2. Iterate over the faces of the model and create a unique edge list using

a hash table. The hash function for an edge is the sum of the two
vertex indices of the edge.

3. Set border flag for edges with only one neighboring face or two
neighboring faces with different materials.

4. For non-deformable geometry, set crease flag for edges for which the
dihedral angle between the two neighboring faces is greater than the
crease threshold.

Runtime:
1. If necessary, calculate face normals.
2. For deformable meshes (i.e., animation), detect crease edges from

face normals and set crease flags.
3. Detect silhouette edges via Equation 2 and set silhouette flags.
4. Traverse the edge list and render edges whose edge flag is set.

The visibility of important edges is solved via the z-buffer, as
provided by the graphics API. The Inker operates most optimally
on static geometry that is not animated or deformable, since the
edge list – including crease and border edges – can be created at
authoring or load time. To Ink non-static geometry, we must re-
detect crease edges every frame.

4.2 Rendering Important Edges
Silhouettes are rendered using line segments, the width of which
can be adjusted according to lighting parameters [Gooc99], a
distance metric, or a user-defined parameter. As an object moves
away from the eye, the silhouette line width can be reduced with
increasing distance. Silhouettes can be rendered using any color
or texture map. We have observed that ink lines in cartoons are
traditionally black or a darker shade of the material color.

Silhouette
Edge

Eye Point
 Back Facing Polygon

Figure 8: Silhouette edge detection. A silhouette edge is an
edge between a front-facing and a back-facing polygon.

Front Facing Polygon

Equation 2.

0)()(21 ≤•∗• eyeVectfaceNormaleyeVectfaceNormal

4.3 Stylized Silhouette Edges
In addition to straight ink lines, the Inker allows texture mapping
of important edges of a mesh to add artistic styles to edge lines as
first shown in [Mark97]. We extend the method of rendering
edges with textures used by Markosian et al to support textures
that follow the curvature of the edges. To illustrate this method,
we show a 2D “terrain” model in Figure 9 composed of many
edges, where each edge is rendered once as a straight line
segment, and again as a curved texture. Figures 11 and 12
demonstrate the technique on other 3D models.

We use three textures to implement curvature-driven textured
edges. These textures are a straight stroke, a “rightward” stroke,
and a “leftward” stroke as shown in Figure 10. A straight texture
is used if the edge Ē1 forms an angle of d degrees or less with its
successor edge Ē2; otherwise either a “leftward” or “rightward”
texture is selected, as shown in Equation 3. We calculate the
cosine of the angle d from the dot product of the vector along
edge Ē1 with the vector along edge Ē2. In order to efficiently
determine the successor of an edge, we create a graph whose
vertices correspond to the vertices of the model, and insert edges
into the graph as silhouette edges are found by the SED algorithm.

Once all edges have been added, we perform a depth-first
search on the graph to find the successor of each silhouette edge.
This takes O(|E| + |V|) time, but in practice, |E| will be

proportional to |V| because a silhouette edge will usually have at
most two neighboring edges. Thus, the average cost of finding
the successor of one edge will be O(1). The number of textures
used is variable, and more complex texture-selection metrics can
be applied.

In order to texture an edge, we must first construct a
quadrilateral on which to map a texture. Quadrilaterals are
oriented to face the eye. We apply the texture previously selected
for each edge to the quadrilateral representing the edge. Figure 12
shows our curvature-driven texture mapping applied to a model
using a brown crayon texture. Notice that in the areas of high
curvature, in particular the fingernails, the effects of this
technique are visible. We find that this style of edge drawing
presents a more pleasing, higher-detail appearance even to models
with a fairly small number of polygons. For edges that are small
we can increase the width of the quadrilateral. This might be the
case if the object is translated far from the eye. Also, various
artistic effects can be achieved by randomizing the width of the
quadrilaterals.

While we have found this technique to be suitable for models
rendered only as silhouettes with polygons colored the same as the
background color, it is not effective when also rendering interior
polygons with their original material color. Several new problems
are introduced, including the overlapping of the textured
quadrilaterals and the polygons of the mesh. Offsetting the
textured quads away from the mesh introduces gaps between the
quad and mesh that must be filled. In addition, when the quads
project to sharp angles on the view plane, gaps in the silhouette
edges may result. From a distance or with a highly-tessellated
mesh these problems are not so disturbing. More robust and
general solutions should be pursued, including the use of 2D
image-based stylized silhouette edge rendering techniques.

Image

Motion lines

Figure 13: Left: an artist’s depiction of a brick flying
towards a man [Lutz20]. Top right: the artist’s image
of a brick flying. Bottom right: motion lines generated
using our technique.

Figure 12: Left: a straight texture map applied to
silhouettes of Olaf. Right: shows the curvature-driven
texture maps applied to Olaf. Notice that the curvature of
the fingernails is maintained.

Figure 11: Left: a set of silhouettes as determined from
the model of a 3D sphere. Right: the result using
curvature-driven texture strokes.

Figure 10: Strokes used for stylized silhouette edges

Straight Stroke Rightward Stroke Leftward Stroke

Figure 9: Top: a simplified terrain model rendered with basic
line segments. Bottom: the terrain model rendered using
curvature-driven textures.

Equation 3.

then apply left texture

then apply straight texture

then apply right texture






≥
<<−

−≤
=•

)cos(
)cos(0)cos(

)cos(
21

d
dd

d
EE

5 Motion Lines
Many cartoons introduce nongeometric information into the scene
in order to indicate that a character or object is moving quickly, a
surface is glossy, an impact has occurred, and other effects.
Motion lines are used in cartoons to show rapid motion or for
artistic style [Lutz20]. Figure 13 shows a brick flying toward a
character walking down a street. The lines drawn behind the brick
convey the sense that the brick is in motion. Without these
motion lines, there would be no context for the brick in the scene.
[Hsu94] and [Masu99] show previous examples of techniques for
these types of effects. [Hsu94] describes a two dimensional
approach that uses the difference in position of an object in two
different frames to construct two dimensional motion lines using
triangle slivers that originate on the back side of the model. They
also describe a technique to interpolate using a Catmull-Rom
spline with intermediate positioning of the objects in the scene.
[Masu99] uses an algorithm similar to ours and outputs a vector
oriented description of the surface for rendering.

Our technique keeps track of the translation of an object from
frame to frame and draws motion lines for the object. Each motion
line is a collection of line segments with associated parameters for
length, width, color, starting vertex position, and a visibility flag.
A set of motion lines is used to give the appearance of motion in a
cartoon scene. The number of lines can be varied depending on
aesthetic preference, but we find that fewer than ten works well in
practice. Finally, we need to determine which objects in the scene
need motion lines. One method is for the content author to tag
objects in the scene, another is to test each object to determine if it
has traveled over a threshold velocity.

In a preprocess, we randomly select n vertices of the 3D
model for which motion lines will be drawn. We allocate and
initialize a circular buffer of length that is at least that of the
longest motion line. Parameter values that we have found work
well in practice are black line color, a line width of one pixel, and
a length of 20 line segments for all motion lines. At runtime we
store in the circular buffer a translation vector corresponding to
the translation of the object in the current frame, and increment
the pointer into the circular buffer by one. For each motion line,
we iterate over all locations in the circular buffer, wrapping
around to the beginning of the buffer. Starting from the initial
vertex position stored with the motion line, at each step of the
iteration we add the translation vector in the buffer to the previous
vertex position, and render a line segment between the previous
and new positions.

6 Integration With Animation and Multi-
Resolution Mesh

Many systems have been created to address animation in a
stylized rendering architecture, including [Rade99] and [Lass87].
In our system, no new information from the modeler is necessary
beyond that required for traditional computer animation. We
export from a 3D-modeling tool a bones-based representation of
the animation to which we apply standard key frame animation
[Digi00a].

Our Multi-Resolution Mesh (MRM) system is a plug-in for a
3D authoring tool based on the work by Garland and Heckbert
[Garl97]. The MRM system exports a file consisting of a base
mesh and an ordered list of vertex additions and deletions for the
MRM runtime system [Digi00b]. Each addition or deletion is an
update record in the file. A constant frame rate can be achieved
by using update records from the MRM file to dynamically
change mesh resolution.

7 Scalability
Since today’s consumer hardware is equipped with various types
of processors, graphics accelerators, and drivers, we have
integrated our NPR techniques with MRM so that they can scale
in real time to maintain a constant frame rate while maximizing
visual fidelity. We use the term scalability to mean the ability to
render models with our NPR techniques at interactive frame rates
on a range of low- to high-end platforms. In Table 1, we show
that we can remove from or add vertices to a 3D mesh to change
the level of detail of the mesh at run time and maintain 30 fps.
Figure 14 shows a comparison of the performance of our stylized
rendering algorithms against that of Gouraud shading with and
without animation on a high-end Pentium III® performance level
PC. We are in no way indicating benchmarks of a particular
processor, graphics card, or any other device.

8 Conclusions and Future Work
In this paper we have introduced techniques for cartoon shading
and pencil-sketch rendering for real-time animation. We have
also discussed our implementation of silhouette edge detection
and rendering. Finally, we have introduced motion lines as a way
to simulate motion in a cartoon rendered animation.

Scalability using a Multi-Resolution Mesh
Representation of Geometry

Processor
Class Gouraud Painter Painter and

Inker
Pentium® 2,598/1,697 2,282/1,525 934/740

Pentium II® 13,456/7,402 12,820/7,081 6,920/4,011

Pentium III® 16,760/8,764 16,760/8,764 11,162/6,226

Table 1. To maintain 30 fps the MRM system was used to
control the number of polygons in the pipeline. To give an
idea of the performance that can be achieved, the table shows
the faces and vertices that can be rendered and still maintain
30 fps on each class of machine (faces/vertices). The model
used was the duck in Figure 18.

Figure 14: A comparison of stylized rendering and Gouraud
shading with and without animation on a high-end Pentium
III® PC.

Performance

0

50

100

150

200

250

300

16
,7

60

11
,8

00

9,
05

6

6,
79

2

4,
25

6

2,
06

8

1,
55

4

90
6

Number of Triangles

FP
S

Gouraud
Painter
Painter+Inker
Pencil Sketch
Gouraud+Anim.
Painter+Inker Anim.

In the future we would like to find a solution to the "shower
door" problem that results when we animate scenes rendered with
the pencil sketch technique described in Section 3.3. Also, we
would like to integrate our motion lines into a cartoon world with
other traditional cartoon effects and cartoon characters rendered
with our Inker and Painter. Another area of future work is in
handling the issues of stylized silhouette rendering presented in
Section 4.3.

There are many "by-hand" techniques that have been used by
artists and animators for years that will elicit interesting research
for methods of automated simulation in years to come. We are
excited by the prospect of providing artists with new media and
tools for storytelling and immersive experiences. We have
presented a snapshot of our research and development. In the
future we will continue to explore the arena of automated methods
for stylized rendering and animation.

9 Acknowledgements
Thanks to Michael Rosenzweig, Mike Mesnier, Stephen Junkins,
Jason Plumb, and Dan Johnston for support, ideas, and
suggestions, and David Hostetler for speedy coding. We would
also like to thank Bruce Gooch, Lee Markosian, and Matt Cutts
for discussions and ideas, and John Hughes for suggestions on the
paper. Finally, thanks to Keith Feher for the duck model and
Gary Barclay for the Toon background. The material contained
herein may be used for informational purposes only. Any third
party brands and names are the property of their respective
owners. No license, expressed or implied, by estoppel or
otherwise, to any Intel intellectual property is granted by this
document. This document is provided “as is” without warranty,
including liability or warranties relating to fitness for a particular
purpose, merchantability, or infringement of any patent,
copyright, or other intellectual property right.

References
[Appe67] Arthur Appel. The notion of quantitative invisibility
and the machine rendering of solids. Proceedings of 22nd National
Conference, ACM, Thompson Book Company, Washington D.C.,
Academic Press, London. Pages 387-393. 1967.
[Deca96] Philippe Decaudin. Rendu de scènes 3D imitant le style
«dessin animé». Rapport de Recherche 2919, Institut National de
Recherche en Informatique et en Automatique. 1996.
[Digi97] Digimation. The Incredible Comic Shop. 150 Jamies
Drive East, Suite 140, St. Rose, LA. 70087. 1997.
[Digi00a] Digimation. Animate RT. 150 Jamies Drive East, Suite
140, St. Rose, LA. 70087. 1999.
[Digi00b] Digimation. MultiRes 2. 150 Jamies Drive East, Suite
140, St. Rose, LA. 70087. 1999.
[Fole96] James Foley, Andreis Van Dam, Steven Feiner, and John
Hughes. Introduction to Computer Graphics: Principles and
Practice. Addison Wesley, 1996.
[Garl97] Michael Garland and Paul S. Heckbert.
SurfaceSimplification Using Quadric Error Metrics. In
Proceedings of ACM SIGGRAPH 97, pages 209-216. 1997.
[Gooc98] Amy Gooch, Bruce Gooch, Peter Shirley, and Elizabeth
Cohen. A Non photorealistic Lighting Model for Automatic
Technical Illustration. In Proceedings of ACM SIGGRAPH 98,
pages 447-452. 1998.
[Gooc99] Bruce Gooch, Peter-Pike J. Sloan, Amy Gooch, Peter
Shirley and Richard Riesenfeld. Interactive Technical Illustration,
IEEE Symposium on Interactive 3D Graphics, pages. 31--38 April
1999.

[Gour71] H. Gouraud. Continuous Shading of Curved Surfaces.
IEEE Trans. On Computer Graphics. Pages 623-629. 1971.
[Heid99] Wolfgang Heidrich and Hans-Peter Seidel. Realistic,
Hardware-accelerated Shading and Lighting. In Proceedings of
ACM SIGGRAPH 99, pages 171-178. 1999.
[Hoga81] Burne Hogarth. Dynamic Light and Shade. Watson-
Guptill Publications. New York. 1981.
[Hsu94] Siu Chi Hsu and Irene H. H. Lee. "Drawing and
Animation using Skeletal Strokes". In Proceedings of ACM
SIGGRAPH 94, pages 109-118. 1994.
[Igar99] Takeo Igarashi, Satoshi Matsuoka and Hidehiko Tanaka.
Teddy: A Sketching Interface for 3D Freeform Design. In
Proceedings of ACM SIGGRAPH 99, pages 409-416. 1999.
[Kowa99] Michael Kowalski, Lee Markosian, J.D.Northrup, et al
Art-Based Rendering of Fur, Grass, and Trees. In Proceedings of
SIGGRAPH 99, pages 433-438. 1999.
[Lass87] John Lasseter, Principles of Traditional Animation
Applied to 3D Computer Animation. In Proceedings of ACM
SIGGRAPH 87, pages 35-44. 1987.
[Ligh99] Lightwork Design. Kazoo. Lightwork Design Ltd.
Rutledge House. 78 Clarkehouse, Shefield S10 2LJ, United
Kingdom. 1999.
[Lutz20] E. G. Lutz. Animated Cartoons. Applewood Books.
Massachusetts. 1920.
[Mark97] Lee Markosian, Michael Kowalski, Samuel Trychi,
Lubomir Bourdev, Daniel Goldstein, and John Hughes. Real-
Time Nonphotorealistic Rendering. In Proceedings of ACM
SIGGRAPH 97, pages 113-122. 1997.
[Masu99] Maic Masuch. “Speedlines: Depicting Motion in
Motionless Pictures.” ACM SIGGRAPH 99 Technical sketch.
[Ment99] Mental Images. Mental Ray. GmbH & Co. KG.
Fasanenstrasse 81, D-10623 Berlin, Germany.
[Meta99] Metacreations Poser. http://www.metacreations.com/
products/poser4/. 6303 Carpinteria, CA 93013, 1999.
[McCl93] Scott McCloud. Understanding Comics. Harper
Collins Publishers, New York. 1993.
[Meie96] Barbara Meier. Painterly Rendering for Animation. In
Proceedings of SIGGRAPH 96, pages 477-484, 1996.
[Rask99] Ramesh Raskar and Michael Cohen. Image Precision
Silhouette Edges. Symposium on Interactive 3D Graphics 99.
[Rade99] Paul Rademacher. View-Dependent Geometry. In
Proceedings of ACM SIGGRAPH 99, pages 439-446. 1999.
[Reyn99] Craig Reynolds. Stylized Depiction in Computer
Graphics. http://www.red.com/cwr/painterly.html/.
[Sous99] Mario Costa Sousa and John W. Buchanan. Computer
Generated Graphite Pencil Renderings of 3D Polygonal Models. .
In Computer Graphics Forum, pages 195-207. Eurographics ’99
Conference issue.
[Thom81] Frank Thomas and Ollie Johnston. The Illusion of Life:
Disney Animation. Hyperion, New York. 1981.
[View98] Viewpoint Data Labs. Liveart 98. Orem, UT, 1998.
[Wink94a] Georges Winkenbach and David H. Salesin.
Computer Generated Pen-and-Ink Illustration. In Proceedings of
ACM SIGGRAPH 94, pages 91-100. 1994.
[Woo99] Mason Woo, Jackie Neider, Tom Davis, and Dave
Shriener. OpenGL Programming Guide, 3rd Edition. Addison
Wesley, 1999.
[Zele96] R. Zeleznik, K. Herndon, and J.F. Hughes. Sketch: An
interface for sketching 3d Scenes. In Proceedings of SIGGRAPH
96, pages 163-170. 1996.

http://www.metacreations.com/ products/poser4/
http://www.metacreations.com/ products/poser4/
http://www.red.com/cwr/painterly.html/

Figure 18: Left: an image rendered using the Inker and
background-colored faces, to simulate a cel before painting.
Right: an inked and painted cel, using the cartoon shading
from Section 3.

Figure 19: An example animation sequence that uses our cartoon shading technique and runs in real time on a PC. The left and right
images are Gouraud shaded. From left to right the number of polygons was decreased at runtime to increase frame rate. The leftmost
image has 16,000 polygons, and the rightmost has 1,000.

Figure 16: Olaf rendered using different cartoon shading
styles for each material of the 3D mesh.

Figure 15: A cartoon-shaded duck that uses our Painter and
Inker in a cel animation.

Figure 17: A cartoon-shaded hair dryer using shadow-and-
highlight shading and ink lines.

Figure 20: Images rendered using our pencil sketch algorithm and Inker.

	Abstract
	1 Introduction
	2 Previous Work
	2.1 Previous Work In Stylistic Rendering
	2.2 Previous Work In Silhouette Edge Detection (SED)

	3 Stylistic Shading
	3.1 Cartoon Shading
	3.2 Variations On Cartoon Shading
	3.3 Pencil Sketch Shading

	4 Stylistic Inking
	4.1 Silhouette Edge Detection
	4.2 Rendering Important Edges
	4.3 Stylized Silhouette Edges

	5 Motion Lines
	6 Integration With Animation and Multi-Resolution Mesh
	7 Scalability
	8 Conclusions and Future Work
	9 Acknowledgements
	References

